海信全息激光HUD上车:车窗秒变巨幕

海信全息激光HUD上车:车窗秒变巨幕据了解,海信激光车载HUD采用了全色激光投影技术,较传统LED显示色彩表现力提升48%,可将图像投射到挡风玻璃上,为驾驶员提供了更加清晰、安全、智能的驾驶辅助功能。官方介绍,海信激光全息HUD显示系统,采用高度集成化的设计,体积较传统二次光学方案降低80%,发光效率是传统LED的2倍。其借助车载光学技术,实现侧窗/后窗玻璃的全景投影,可让车窗变成影像巨幕,汽车变身移动的沉浸影院。用更小体积、更大显示面积、更清晰画质、更高能效成为车载显示的最佳选择,在车载嵌入式辅助智驾市场具有全球领先优势。资料显示,激光显示技术是一种利用激光作为光源,通过反射、折射、衍射等方式,将图像投射到屏幕或其他介质上的显示技术。激光显示技术具有高亮度、高色域、高分辨率、高对比度、低功耗、低散热、长寿命、小体积等一系列优点,可以实现超高清显示的同时,还可以适应不同的投射距离和角度,实现大屏幕、曲面屏幕、全息屏幕等多种形态的显示。...PC版:https://www.cnbeta.com.tw/articles/soft/1423673.htm手机版:https://m.cnbeta.com.tw/view/1423673.htm

相关推荐

封面图片

克服两个长期存在的瓶颈 新进展为更真实的3D全息图铺平道路

克服两个长期存在的瓶颈新进展为更真实的3D全息图铺平道路"三维全息图可以呈现具有连续和精细特征的真实三维场景,"领导中国科技大学研究团队的龚磊说。"对于虚拟现实,我们的方法可以与基于头盔的全息显示器一起使用,以大大改善视角,这将增强3D观看体验。它还可以在不需要头盔的情况下提供更好的3D视觉效果"。创建一个逼真的全息显示器需要将高分辨率的图像投射到紧密排列的多层上,这个过程产生了高深度的分辨率,这对于提供全息图看起来是三维的必要深度感知是至关重要的。新的三维散射辅助动态全息方法通过将高分辨率的图像投射到间隔紧密的平面上(a)来创建数字全息图,实现了比传统全息技术更真实的表现(b)。资料来源:中国科学技术大学,龚磊在Optica出版集团的高影响力研究杂志《Optica》上,龚磊的团队和新加坡国立大学邱成伟的研究团队描述了他们的新方法,称为三维散射辅助动态全息技术(3D-SDH)。他们表明,它可以实现比最先进的多平面全息投影方法大三个数量级以上的深度分辨率。"我们的新方法克服了当前数字全息技术中长期存在的两个瓶颈--低轴向分辨率和高平面间串扰--它们阻碍了全息图的精细深度控制,从而限制了三维显示的质量,"龚说。"我们的方法还可以通过允许在全息图中加密更多的数据来改进基于全息图的光学加密。"创建动态全息投影通常涉及使用空间光调制器(SLM)来调制光束的强度和/或相位。然而,今天的全息图在质量上是有限的,因为目前的SLM技术只允许将一些低分辨率的图像投射到具有低深度分辨率的独立平面。为了克服这个问题,研究人员将一个SLM与一个扩散器结合起来,使多个图像平面以更小的数量分开,而不受SLM特性的限制。通过抑制平面之间的串扰,利用光的散射和波前整形,这个装置可以实现超高密度的三维全息投影。研究人员用他们的新方法模拟了火箭的全息表现[图示为(a),点云模型为(b)]。由基于随机矢量的计算机生成全息(RV-CGH)方法投影的三维火箭的体积渲染图像显示在(c)中,使用的是单个1000×1000像素的全息图。三维投影由32幅图像表示,深度间隔为3.75毫米。3D-SDH投影的物体的体积渲染图像显示在(d)中。125个均匀距离为0.96毫米的图像平面同时从一个1000×1000像素的全息图上投影出来。(e-g)中显示了具有不同视角的模拟三维火箭的体积渲染图像。为了测试这种新方法,研究人员首先用模拟显示,它可以产生每个平面之间深度间隔更小的三维重建。例如,他们能够在一张1000×1000像素的全息图中以0.96毫米的深度间隔投射出125个连续图像平面的三维火箭模型,而使用最近开发的另一种被称为基于随机矢量的计算机生成全息术的方法,则有32个图像平面,深度间隔为3.75毫米。为了在实验中验证这一概念,他们建立了一个3D-SDH原型投影仪来创建动态3D投影,并将其与传统的最先进的3D菲涅尔计算机生成全息术设置进行了比较。他们表明,3D-SDH在轴向分辨率上比传统的对应设备提高了三个数量级以上。研究人员展示的3D全息图都是点云式3D图像,这意味着它们不能呈现3D物体的实体。最终,研究人员希望能够用全息图投射出三维物体的集合,这将需要更高像素的全息图和新算法。...PC版:https://www.cnbeta.com.tw/articles/soft/1353583.htm手机版:https://m.cnbeta.com.tw/view/1353583.htm

封面图片

东京大学研究人员的新算法让iPhone变成全息投影仪

东京大学研究人员的新算法让iPhone变成全息投影仪东京大学的一个研究小组介绍了一种利用智能手机生成全息图像的实用、经济高效的方法,旨在简化和增强虚拟现实和增强现实的3D显示效果,同时避免激光系统的缺点。无论增强现实和虚拟现实显示器是用于游戏、教育还是其他应用,结合3D显示器都能创造出更加逼真和互动的用户体验。来自日本东京大学的研究小组组长RyoichiHorisaki说:"尽管全息技术可以创建出非常逼真的物体3D呈现,但传统方法并不实用,因为它们依赖于激光源。激光发出的相干光易于控制,但却使系统变得复杂、昂贵,而且有可能对眼睛造成伤害。"在Optica出版集团的《光学快报》(OpticsLetters)杂志上,研究人员介绍了他们基于计算机生成全息技术(CGH)的新方法。得益于他们开发的一种新算法,他们只需使用一部iPhone和一种名为空间光调制器的光学元件,就能再现由两个全息层组成的三维彩色图像。研究人员开发出一种三维全彩显示方法,利用智能手机屏幕而不是激光来创建全息图像。图为他们的实验结果,其中可以观察到从第一层到第二层的连续过渡。图片来源:东京大学RyoichiHorisaki"我们相信,在未来的视觉界面和3D显示应用中,这种方法最终将有助于最大限度地减少光学元件、降低成本和减少对眼睛的潜在伤害,"论文第一作者OtoyaShigematsu说。"更具体地说,它有可能提高近眼显示器的性能,比如高端VR头显中使用的近眼显示器。"更实用的方法虽然CGH使用算法生成图像,但通常需要激光发出的相干光来显示这些全息图像。在之前的一项研究中,研究人员发现,白色芯片板发光二极管发出的时空非相干光可用于CGH。然而,这种装置需要两个空间光调制器--控制光波面的设备--由于价格昂贵而不切实际。在这项新研究中,研究人员开发出了一种成本更低、更实用的非相干CGH方法。Horisaki说:"这项工作与我们实验室对计算成像的关注不谋而合,计算成像是一个致力于通过将光学与信息科学相结合来创新光学成像系统的研究领域。我们致力于最大限度地减少光学元件,消除传统光学系统中不切实际的要求。"图为第一作者重松大弥在实验室中使用的光学实验装置。资料来源:RyoichiHorisaki,东京大学新方法通过空间光调制器传递来自屏幕的光线,从而呈现多层次的全彩三维图像。虽然这看似简单,但却需要对屏幕的非相干光传播过程进行仔细建模,然后利用这些信息开发出一种新算法,将来自设备屏幕的光线与单个空间光调制器协调起来。重松说:"使用低相干光的全息显示器可以实现逼真的三维显示,同时有可能降低成本和复杂性。尽管包括我们在内的几个小组已经展示了使用低相干光的全息显示器,但我们通过使用智能手机显示器将这一概念发挥到了极致。"为了演示这种新方法,研究人员在iPhone14Pro的屏幕上显示了一层全息图像,并在空间光调制器上显示了第二层全息图像,从而制作出了双层光学再现全彩3D图像。生成的图像每边的尺寸为几毫米。研究人员目前正在努力改进这项技术,使其能够显示更大、层次更多的3D图像。更多层次可以提高空间分辨率,使物体在不同深度或距离观看者更远的地方出现,从而使图像看起来更逼真。...PC版:https://www.cnbeta.com.tw/articles/soft/1427110.htm手机版:https://m.cnbeta.com.tw/view/1427110.htm

封面图片

2024 欧洲杯即将开战 海信电视稳居世界第二

2024欧洲杯即将开战海信电视稳居世界第二2024年德国欧洲杯即将开幕。近日,市场调研机构奥维睿沃(AVCRevo)发布的《全球TV品牌出货月度数据报告》显示,海信电视在1-4月份市场份额达14.26%,稳居全球第二。海信以技术创新为核心竞争力,全面布局LCD、激光、LED等多元显示技术,为欧洲杯提供升级的ULEDX画质技术,包括全场景AI计算画质平台和独特的光学系统。海信还将为欧洲杯提供显示技术支持,展现中国显示技术的实力。预计在欧洲杯和奥运会刺激下,全球电视出货量将增长2.6%。

封面图片

斯坦福科学家开发出革命性的AR头戴设备 全息技术让普通眼镜展示3D仙境

斯坦福科学家开发出革命性的AR头戴设备全息技术让普通眼镜展示3D仙境通过全息技术和人工智能,这些眼镜可以在直接观看真实世界的基础上显示全彩3D移动图像。图片来源:安德鲁-布罗德海德电子工程系副教授、快速崛起的空间计算领域专家戈登-韦茨坦(GordonWetzstein)说:"我们的头显在外界看来就像一副日常佩戴的眼镜,但佩戴者透过镜片看到的是一个丰富的世界,上面叠加着生动的全彩三维计算图像。"韦茨坦和一个工程师团队在《自然》杂志上发表的一篇新论文中介绍了他们的设备。他们说,虽然这种技术现在只是一个原型,但它可以改变从游戏和娱乐到培训和教育等领域--在任何地方,计算机图像都可以增强或告知佩戴者对周围世界的了解。韦茨坦领导的斯坦福计算成像实验室的博士生、该论文的共同第一作者马努-戈帕库马尔(ManuGopakumar)说:"我们可以想象,外科医生戴着这样的眼镜来规划精细或复杂的手术,或者飞机机械师戴着这样的眼镜来学习如何操作最新的喷气发动机。"这种新方法首次将复杂的工程要求串联起来,迄今为止,这些要求要么导致头戴式头显不美观,要么导致3D视觉体验不令人满意,佩戴者会感到视觉疲劳,有时甚至有点恶心。斯坦福大学计算成像实验室博士后研究员、论文共同第一作者Gun-YealLee说:"目前还没有其他增强现实系统能与我们的三维图像质量相媲美。"为了取得成功,研究人员结合人工智能增强全息成像和新型纳米光子设备方法,克服了各种技术障碍。第一个障碍是,显示增强现实图像的技术通常需要使用复杂的光学系统。在这些系统中,用户实际上无法通过头显镜头看到真实世界。相反,安装在头显外部的摄像头会实时捕捉世界,并将图像与计算图像相结合。然后将生成的混合图像立体投射到用户眼中。"用户看到的是现实世界的数字化近似图,上面叠加了计算图像。这是一种增强虚拟现实,而不是真正的增强现实。"Wetzstein解释说,这些系统必然非常笨重,因为它们在佩戴者的眼睛和投影屏幕之间使用放大镜片,要求眼睛、镜片和屏幕之间的距离最小,从而增加了体积。斯坦福计算成像实验室的博士生、论文的共同作者SuyeonChoi说:"除了笨重之外,这些局限性还可能导致感知真实度不尽人意,通常还会造成视觉不适。"为了制作出在视觉上更令人满意的三维图像,韦茨坦摒弃了传统的立体方法,转而采用全息技术,这是一种在20世纪40年代末获得诺贝尔奖的视觉技术。尽管全息技术在三维成像方面大有可为,但由于无法描绘准确的三维深度线索,全息技术的广泛应用一直受到限制,导致视觉体验不佳,有时甚至令人有类似晕车的反应。Wetzstein团队利用人工智能改进了全息图像中的深度提示。然后,利用纳米光子学和波导显示技术的进步,研究人员能够将计算出的全息图像投射到眼镜镜片上,而无需依赖笨重的附加光学器件。通过在透镜表面蚀刻纳米级的图案来构建波导。安装在每个太阳穴上的小型全息显示屏通过蚀刻图案投射计算图像,这些图案会在镜片内反弹光线,然后将光线直接传送到观看者的眼睛。透过眼镜片,用户既能看到真实世界,又能看到上面显示的全彩3D计算图像。3D效果之所以得到增强,是因为它是通过立体和全息两种方式产生的,前者是指每只眼睛都能看到略有不同的图像,就像传统的3D成像一样;后者则是指每只眼睛都能看到略有不同的图像,就像传统的3D成像一样。斯坦福大学计算成像实验室的博士生布莱恩-赵(BrianChao)是这篇论文的共同作者,他说:"利用全息技术,你还可以在每只眼睛前获得完整的三维体积,从而提高栩栩如生的三维图像质量。"新的波导显示技术和全息成像技术的最终成果是提供逼真的三维视觉体验,既能满足用户的视觉需求,又不会让用户感到疲劳,而这种疲劳感正是早期方法所面临的挑战。Wetzstein说:"全息显示一直被认为是终极3D技术,但它从未取得过重大的商业突破。也许现在他们有了多年来一直在等待的杀手级应用"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430536.htm手机版:https://m.cnbeta.com.tw/view/1430536.htm

封面图片

功能材料新“大门” 中科大飞秒激光打印出人工微细血管

功能材料新“大门”中科大飞秒激光打印出人工微细血管飞秒激光动态全息加工方法是一种利用超短脉冲激光进行微纳加工的技术,其特点是能够实现对材料的精细加工和微纳米级别的结构控制。这项技术在制造微细结构方面具有独特的优势,因为它可以实现对材料的高精度切割和微纳米级的表面改性。特别是在构建三维微细结构时,飞秒激光动态全息加工方法可以实现对复杂结构的精细加工和快速制作,为微血管网络的构建提供了重要的技术支持。三维毛细血管网络的构建对于组织工程具有重要的意义。在人工组织和器官的制备过程中,良好的血液供应系统是确保细胞存活和功能的重要保障。然而,传统的体外组织工程制备往往无法有效构建与之相适应的血管系统,导致细胞在体内植入后缺乏有效的血液供应。因此,构建具有生理功能的三维毛细血管网络对于实现人工组织的长期稳定生长和发挥其功能至关重要。飞秒激光动态全息加工方法的引入为构建微血管网络提供了新的可能性和技术支持。通过该方法,可以实现微血管支架的高效构建,为体外组织工程提供了新的解决方案。针对三维毛细血管支架的高效构建,飞秒激光动态全息加工方法具有独特的优势。首先,飞秒激光动态全息加工方法可以在微尺度上实现高精度的加工和结构控制,其加工精度可以达到亚微米甚至纳米级别。这为构建微细的血管支架提供了重要的技术基础,能够实现更加精细和复杂的结构。其次,飞秒激光动态全息加工方法具有加工速度快、成型效率高的特点,可以在较短的时间内完成复杂微结构的制备,为大规模制备三维毛细血管网络提供了可能。因此,飞秒激光动态全息加工方法的应用在三维毛细血管支架的构建中具有重要的技术优势。相关研究成果已经发表于《先进功能材料》,这标志着飞秒激光动态全息加工方法在三维毛细血管网络构建领域取得了重要突破。这一成果的发表不仅证明了该技术在微血管网络构建中的可行性和创新性,也为该领域后续的研究和应用奠定了基础。通过学术期刊的发表,相关研究成果将得到更广泛的认可和关注,有助于推动该技术在组织工程领域的应用和推广。另外,相关技术还获得了专利授权,这意味着该项研究在技术创新和知识产权保护方面取得了重要进展。专利授权不仅对于科研团队而言是一项重要的荣誉,更重要的是可以为后续的产业化应用和商业化转化提供有力的支持。能够通过知识产权的保护确保相关技术在市场竞争中的合法地位,有利于吸引更多的资金和资源投入到相关技术的研发和产业化进程中,推动科研成果更好地转化为生产力。人工微血管网络的应用前景非常广阔。首先,该技术在组织工程和再生医学领域具有重要意义,可以为人工器官和组织的构建提供重要的生理支持,有助于解决传统组织工程中面临的血管供血难题,为人工器官的长期稳定功能提供必要的条件。其次,人工微血管网络的构建还为药物筛选、疾病模型建立等领域提供了新的研究工具和平台,有助于推动相关领域的研究和应用进程。未来,随着人工微血管网络技术的不断完善和推广,相信它将在医学、生物工程等多个领域展现出巨大的应用潜力,为人类健康事业带来新的希望和机遇。通过以上介绍,我们不难看出,飞秒激光动态全息加工方法在人工微血管网络构建领域具有重要的意义和广阔的应用前景。随着相关技术的不断进步和完善,相信它将为组织工程和再生医学领域带来重大的变革和突破,为人类健康事业作出重要贡献。在未来的发展道路上,我们期待该项技术能够得到更广泛的应用,并为人类生命健康事业带来更多的惊喜和希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1418713.htm手机版:https://m.cnbeta.com.tw/view/1418713.htm

封面图片

让全息技术更实用:改变紧凑型半导体激光器的简便方法

让全息技术更实用:改变紧凑型半导体激光器的简便方法这类新的激光阵列结合了腔体和表面发射配置的优势,以实现高质量的照明和高速通信。资料来源:2023KAUST;OmarAlkhazragi垂直腔表面发射激光器,或称VCSEL就是这样一种装置。这些装置是通过在基底上精确地放置或生长交替的半导体层来创造一个高反射的堆栈。然后在上面生长活性材料,接着是第二个反射层。然后,激光可以从该设备的顶部发射出来。VCSEL的优势在于可以在同一衬底上同时创建和使用数百个,但光束容易出现斑点状的轮廓,这使得它不适合于照明、全息、投影和显示等应用。这些都需要在垂直于光束传播方向的平面上有均匀的光线。斑点源于腔体的高度有序性,它只允许发射少量的模式或光束轨迹。研究员OmarAlkhazragi解释说:"VCSEL利用了一个有序的腔体,它只允许光在少数模式下产生共振,而且效率特别高。这些模式中的光子相互干扰,导致斑点和低照明质量"。Alkhazragi和KAUST的同事以及来自中国的合作者已经证明,只需改变设备的形状,打破腔体的对称性,就可以减少来自VCSEL的激光的斑点。这在生成的光中引入了混乱的行为,并允许发射更多的模式。Alkhazragi和他的团队研究了具有D形腔的VCSEL,并将其与具有标准圆柱形或O形几何形状的VCSEL进行比较。他们观察到,D型设备表现出大幅降低的相干性,并相应地增加了60%的光功率,这是可以实现的最大限度。研究人员将这一改进归功于腔内光线的混乱动态。由于光是以相互不相干的模式发射的,所以斑点的可见度降低了。Alkhazragi说:"机器学习可以帮助设计腔体,进一步最大化模式的数量,降低相干性,从而将斑点密度降低到人类的感知之下。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352683.htm手机版:https://m.cnbeta.com.tw/view/1352683.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人