韦伯望远镜的近红外成像仪发现了由复杂的有机分子组成的冰化合物

韦伯望远镜的近红外成像仪发现了由复杂的有机分子组成的冰化合物一个国际天文学家小组利用韦伯望远镜的中红外成像仪(MIRI)识别出了多种由乙醇(酒精)等复杂有机分子组成的冰化合物,还可能有醋酸(醋的一种成分)。这项工作建立在之前韦伯望远镜在寒冷、黑暗的分子云中探测到各种冰的基础上。这幅图像是由韦伯的中红外仪器(MIRI)拍摄的,拍摄的区域与被称为IRAS23385的大质量原恒星平行IRAS2A和IRAS23385(在这幅图像中看不到)是一个国际天文学家小组最近的研究目标,该小组利用韦伯望远镜发现,在行星尚未形成的早期原恒星中存在着制造潜在宜居世界的关键因素。借助近红外成像仪前所未有的光谱分辨率和灵敏度,JOYS+(詹姆斯-韦伯对年轻原恒星的观测)计划单独确定了已被证实存在于星际冰层中的有机分子。这包括在固相中有力地探测到乙醛、乙醇、甲酸甲酯,以及可能存在的乙酸。资料来源:ESA/Webb、NASA、CSA、W.Rocha等人(莱顿大学)复杂有机分子(COM)的起源是什么?由于包括本研究在固相中探测到的COM在内的几种COM以前都是在暖气相中探测到的,因此现在认为它们源于冰的升华。所谓升华,就是直接从固态变成气态,而不变成液态。因此,在冰中探测到COMs使天文学家对更好地了解太空中其他更大分子的起源充满希望。科学家们还热衷于探索,在原恒星演化的更晚阶段,这些COM在多大程度上被传送到行星上。与温暖的气态分子相比,冷冰中的COM被认为更容易从分子云转移到行星形成盘中。因此,这些冰COM可以被纳入彗星和小行星,而彗星和小行星又可能与正在形成的行星相撞,从而为生命的繁衍提供了可能。科学小组还检测到了更简单的分子,包括甲酸(会引起蚂蚁蜇伤的灼烧感)、甲烷、甲醛和二氧化硫。研究表明,二氧化硫等含硫化合物在推动原始地球的新陈代谢反应中发挥了重要作用。一个国际科学家小组利用NASA/ESA/CSA詹姆斯-韦伯太空望远镜,在两颗原恒星周围发现了大量复杂的含碳(有机)分子。该图显示了两颗原恒星之一IRAS2A的光谱。它包括固相中乙醛、乙醇、甲酸甲酯以及可能的乙酸的指纹。韦伯在那里探测到的这些分子和其他分子代表了制造潜在宜居世界的关键成分。资料来源:NASA、ESA、CSA、L.Hustak(STScI)类似于我们太阳系的早期阶段?尤其令人感兴趣的是,所研究的其中一个星源--IRAS2A--被描述为一颗低质量的原恒星。因此,IRAS2A可能类似于我们太阳系的早期阶段。因此,在这颗原恒星周围发现的化学物质很可能存在于太阳系发展的最初阶段,后来被输送到原始地球。科学计划协调人之一、莱顿大学的EwinevanDishoeck说:"所有这些分子都可能成为彗星和小行星的一部分,并在原恒星系统演化过程中,当冰物质向行星形成盘内输送时,最终形成新的行星系统。我们期待着在未来几年里利用更多的韦伯数据逐步追踪这条天体化学线索。"这些观测是为JOYS+(詹姆斯-韦伯观测年轻原恒星)计划进行的。团队将这些成果献给团队成员哈罗德-林纳茨(HaroldLinnartz),他在本文被接受后不久于2023年12月意外去世。这项研究成果于3月13日发表在《天文学与天体物理学》(Astronomy&Astrophysics)杂志上。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424201.htm手机版:https://m.cnbeta.com.tw/view/1424201.htm

相关推荐

封面图片

NASA韦伯望远镜在尚未形成行星的早期原恒星中发现了多种分子与化合物

NASA韦伯望远镜在尚未形成行星的早期原恒星中发现了多种分子与化合物原恒星固相中存在复杂有机分子(COMs)是几十年前通过实验室实验首次预测到的,其他空间望远镜也对这些分子进行了初步探测。其中包括韦伯早期释放科学冰河时代计划,该计划在迄今为止测量到的分子云中最黑暗、最寒冷的区域发现了多种多样的冰。韦伯望远镜的新发现现在,作为"JOYS+"(詹姆斯-韦伯观测年轻原恒星)计划的一部分,利用韦伯中红外成像仪(MIRI)前所未有的光谱分辨率和灵敏度,这些COM被逐一识别出来,并证实它们存在于星际冰层中。这包括在固相中检测到乙醛、乙醇(我们所说的酒精)、甲酸甲酯以及可能的乙酸(醋中的酸)。这张照片是由韦伯的中红外成像仪(MIRI)拍摄的,拍摄的是与被称为IRAS23385的大质量原恒星平行的区域。图片来源:ESA/韦伯、NASA、CSA、W.Rocha等人(莱顿大学)"这一发现有助于解决天体化学中一个长期存在的问题,"团队负责人、荷兰莱顿大学的威尔-罗查(WillRocha)说。"COMs在太空中的起源是什么?它们是在气相还是在冰中产生的?在冰中探测到COMs表明,冷尘粒表面的固相化学反应可以生成复杂的分子"。固相COM的意义由于包括本研究在固相中探测到的COM在内的几种COM以前都是在暖气相中探测到的,因此现在认为它们源于冰的升华。所谓升华,就是直接从固态变成气态,而不变成液态。因此,在冰中探测到COMs使天文学家对更好地了解太空中其他更大分子的起源充满希望。哈罗德-林纳茨(HaroldLinnartz)多年来一直领导着莱顿的天体物理学实验室,并负责协调本研究中所用数据的测量工作。莱顿大学的EwinevanDishoeck是JOYS+计划的协调人之一,他分享说:"哈罗德特别高兴的是,在COM任务中,实验室工作可以发挥重要作用,因为它已经走过了漫长的历程。一个国际科学家小组利用NASA/ESA/CSA詹姆斯-韦伯太空望远镜,在两颗原恒星周围发现了大量复杂的含碳(有机)分子。该图显示了两颗原恒星之一IRAS2A的光谱。它包括固相中乙醛、乙醇、甲酸甲酯以及可能的乙酸的指纹。韦伯在那里探测到的这些分子和其他分子代表了制造潜在宜居世界的关键成分。资料来源:NASA、ESA、CSA、L.Hustak(STScI)科学家们还热衷于探索在原恒星演化的更晚阶段,这些COM在多大程度上被传送到行星上。与云层中的气体相比,冰层中的COM被更有效地传送到行星形成盘中。因此,彗星和小行星可以继承这些冰状COM,而这些彗星和小行星又可能与正在形成中的行星相撞。在这种情况下,COM可以被输送到这些行星上,有可能为生命的繁衍提供原料。科学小组还探测到了更简单的分子,包括甲烷、甲酸、二氧化硫和甲醛。特别是二氧化硫,使科学小组能够研究原恒星中的硫预算。此外,二氧化硫还具有前生物的意义,因为现有的研究表明,含硫化合物在推动原始地球的新陈代谢反应中发挥了重要作用。还检测到了负离子;它们是盐类的一部分,而盐类对于在更高温度下进一步发展复杂的化学性质至关重要。这表明冰层可能更加复杂,需要进一步研究。尤其令人感兴趣的是,所研究的其中一个星源IRAS2A被描述为一颗低质量的原恒星。因此,IRAS2A可能与我们太阳系的原始阶段有相似之处。如果是这样的话,在这颗原恒星中发现的化学物种可能就存在于我们太阳系发展的最初阶段,后来被送到了原始地球上。vanDishoeck说:"随着原恒星系统的演化,冰物质被向内输送到行星形成盘,所有这些分子都可能成为彗星和小行星的一部分,并最终形成新的行星系统。我们期待着在未来几年里利用更多的韦伯数据一步步追踪这条天体化学线索。"莱顿天文台的PoonehNazari最近的其他工作也让天文学家们对发现冰的更多复杂性抱有希望,此前他从WebbNIRSpec数据中初步探测到了氰化甲酯和氰化乙酯。纳扎里说:"令人印象深刻的是,韦伯现在让我们能够进一步探测冰的化学成分,直至氰化物的水平,而氰化物是前生物化学的重要成分。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425396.htm手机版:https://m.cnbeta.com.tw/view/1425396.htm

封面图片

韦伯太空望远镜透视原行星盘 发现其中存在大量碳氢化合物

韦伯太空望远镜透视原行星盘发现其中存在大量碳氢化合物一颗低质量恒星周围的原行星盘的艺术印象。它描述了在ISO-ChaI147周围的盘中探测到的部分碳氢化合物分子(甲烷,CH4;乙烷,C2H6;乙烯,C2H2;二乙炔,C4H2;丙炔,C3H4;苯,C6H6)。资料来源:ALMA(ESO/NAOJ/NRAO)/MPIAVLMS周围行星形成的效率行星是在围绕年轻恒星运行的气体和尘埃盘中形成的。观测结果表明,在超低质量恒星(VLMSs)--质量小于0.3太阳质量的恒星--周围,形成陆地行星比形成气态巨行星更有效率。虽然以前对质量较大的恒星周围内盘区域的化学成分进行过研究,但对极低质量恒星周围内盘区域的研究却很少。韦伯中红外仪器(MIRI)显示的光谱是迄今为止在原行星盘中看到的最丰富的碳氢化合物化学成分,包括13种含碳分子,最高可达苯。其中包括首次在太阳系外探测到的乙烷(C2H6),这是太阳系外探测到的最大的完全饱和碳氢化合物。由于全饱和碳氢化合物预计是由更基本的分子形成的,在这里探测到它们为研究人员提供了有关化学环境的线索。研究小组还首次在原行星盘中成功探测到乙烯(C2H4)、丙炔(C3H4)和甲基自由基CH3。该图突出显示了乙烷(C2H6)、甲烷(CH4)、丙炔(C3H4)、氰乙炔(HC3N)和甲基自由基CH3的探测结果。资料来源:NASA、ESA、CSA、R.Crawford(STScI)AdityaArabhavi及其同事利用JWST的中红外光谱仪研究了ISO-ChaI147周围行星形成盘的化学成分,ISO-ChaI147是变色龙一号恒星形成区中一颗年轻的、太阳质量为0.11的恒星。研究人员发现,这颗恒星周围的内盘区域具有丰富的碳化学成分,包括乙烷和苯在内的13种含碳分子。碳氢化合物分子的丰富程度与所观测到的含氧分子的缺乏形成了鲜明对比,这表明该区域的碳氧比值大于1。据研究小组称,这种高碳/氧比率表明磁盘内物质的径向迁移,很可能会影响在磁盘内形成的任何行星的主体成分。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435452.htm手机版:https://m.cnbeta.com.tw/view/1435452.htm

封面图片

韦伯望远镜发现年轻恒星ISO-ChaI 147周围的神秘碳宝库

韦伯望远镜发现年轻恒星ISO-ChaI147周围的神秘碳宝库这是一颗年轻恒星被气体和尘埃盘包围的艺术印象图。一个国际天文学家小组利用美国宇航局的詹姆斯-韦伯太空望远镜研究了一颗被称为ISO-ChaI147的年轻、质量极低的恒星周围的星盘。研究结果揭示了迄今为止在原行星盘中看到的最丰富的碳氢化合物化学成分。资料来源:NASA/JPL-Caltech一个国际天文学家小组利用美国宇航局的詹姆斯-韦伯太空望远镜(JWST)研究了一颗年轻的低质量恒星周围的气体和尘埃盘。研究结果揭示了迄今为止在这样一个盘中观测到的最大量的含碳分子。这些发现对这颗恒星周围可能形成的任何行星的潜在成分都有影响。对行星形成的影响岩质行星比气态巨行星更有可能在低质量恒星周围形成,因此它们是银河系中最常见恒星周围最常见的行星。人们对这类行星的化学性质知之甚少,它们可能与地球相似,也可能与地球大相径庭。天文学家希望通过研究形成这类行星的星盘,更好地了解行星的形成过程和由此产生的行星的成分。低质量恒星周围的行星形成盘很难研究,因为它们比高质恒星周围的盘更小更暗。一项名为"MIRI(中红外仪器)中红外盘巡天"(MINDS)的计划旨在利用韦伯望远镜的独特功能,在盘的化学物质清单和系外行星的特性之间架起一座桥梁。第一作者、荷兰格罗宁根大学的AdityaArabhavi解释说:"与以前的红外空间望远镜相比,韦伯望远镜具有更好的灵敏度和光谱分辨率。这些观测在地球上是不可能实现的,因为来自圆盘的辐射被我们的大气层阻挡了。"美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜的中红外成像仪(MIRI)所揭示的ISO-ChaI147恒星的光谱显示了迄今为止在原行星盘中所看到的最丰富的碳氢化合物化学成分,其中包括13种含碳分子。其中包括首次在太阳系外探测到的乙烷(C2H6)。研究小组还首次在原行星盘中成功探测到乙烯(C2H4)、丙炔(C3H4)和甲基自由基CH3。资料来源:NASA、ESA、CSA、R.Crawford(STScI)系外行星化学的突破性发现在一项新的研究中,该研究小组探索了一颗被称为ISO-ChaI147的超低质量恒星周围的区域,这是一颗具有100万到200万年历史的恒星,其重量仅为太阳的0.11倍。韦伯的近红外成像仪揭示的光谱显示了迄今为止在原行星盘中看到的最丰富的碳氢化合物化学成分--共有13种不同的含碳分子。研究小组的发现包括首次在太阳系外探测到乙烷(C2H6),以及乙烯(C2H4)、丙炔(C3H4)和甲基自由基CH3。Arabhavi补充说:"这些分子已经在太阳系中被探测到,比如在67P/Churyumov-Gerasimenko和C/2014Q2(Lovejoy)等彗星中。韦伯望远镜让我们了解到,这些碳氢化合物分子不仅种类繁多,而且数量巨大。我们现在可以看到这些分子在行星摇篮中的舞动,这真是令人惊叹。这与我们通常想象的行星形成环境截然不同。"研究小组指出,这些结果对内盘的化学性质以及可能在那里形成的行星具有重大影响。由于韦伯望远镜揭示的内盘气体富含碳元素,因此行星可能形成的固体物质中的碳元素所剩无几。因此,可能在那里形成的行星最终可能是贫碳的。(地球本身就被认为是贫碳的)。同样来自格罗宁根大学的团队成员英格-坎普(IngaKamp)补充说:"这与我们在太阳型恒星周围的星盘中看到的成分大相径庭,在太阳型恒星周围的星盘中,水和二氧化碳等含氧分子占主导地位。"这个天体证明,这是一类独特的天体。"团队成员、法国国家科学研究中心的AgnésPerrin补充说:"我们能在600多光年外的天体中探测到我们在地球上熟知的分子(如苯)的数量并对其进行量化,这真是不可思议。"未来研究方向下一步,科学团队打算将他们的研究扩展到更大样本的极低质量恒星周围的此类星盘,以加深他们对此类富碳陆地行星形成区域的常见性或奇特性的理解。研究小组成员、MINDS计划首席研究员、德国马克斯-普朗克天文研究所的托马斯-亨宁解释说:"扩大研究范围还能让我们更好地了解这些分子是如何形成的。韦伯数据中的一些特征也仍未确定,因此需要更多的光谱分析来全面解释我们的观测结果"。这项工作还凸显了科学家跨学科合作的重要必要性。研究小组指出,这些结果和附带数据有助于其他领域(包括理论物理、化学和天体化学)解释光谱,并研究这一波长范围内的新特征。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434078.htm手机版:https://m.cnbeta.com.tw/view/1434078.htm

封面图片

韦伯太空望远镜揭示岩石行星可在极端环境中形成

韦伯太空望远镜揭示岩石行星可在极端环境中形成天文学家发现了一系列分子,它们都是岩石行星的组成成分。太空是一个严酷的环境,但有些区域比其他区域更加严酷。一个被称为龙虾星云的恒星形成区孕育着银河系中一些质量最大的恒星。大质量恒星的温度更高,因此会发出更多的紫外线(UV)。这些紫外线照射着附近恒星周围的行星形成盘。天文学家预计紫外线会分解许多化学分子。然而,詹姆斯-韦伯太空望远镜在这样一个星盘中检测到了多种分子,包括水、一氧化碳、二氧化碳、氰化氢和乙炔。这些分子是岩石行星的构成成分之一。这是艺术家绘制的年轻恒星被原行星盘包围的图像,行星正在原行星盘中形成。图片来源:ESO一个国际天文学家小组利用美国国家航空航天局的詹姆斯-韦伯太空望远镜,首次观测到在银河系最极端环境中的一个圆盘的高度辐照内部、岩石行星形成区域中的水和其他分子。这些结果表明,岩质行星形成的条件可能发生在比以前想象的更广泛的环境中。这是詹姆斯-韦伯太空望远镜"极端紫外环境"(XUE)计划的首批研究成果,该计划主要研究大质量恒星形成区中行星形成盘(由气体、尘埃和大块岩石组成的巨大旋转云团,行星在此形成和演化)的特征。这些区域很可能代表了大多数行星系统的形成环境。了解环境对行星形成的影响对于科学家深入了解不同类型系外行星的多样性非常重要。XUE计划的目标是龙虾星云(又称NGC6357)三个区域中的共15个盘状星团,这是一个大型发射星云,距离地球大约5500光年,位于天蝎座。龙虾星云是最年轻、最近的大质量恒星形成群之一,也是银河系中一些质量最大恒星的所在地。大质量恒星的温度更高,因此会发出更多的紫外线(UV)辐射。这会分散气体,使圆盘的预期寿命短至一百万年。有了韦伯望远镜,天文学家现在可以研究紫外线辐射对太阳等恒星周围原行星盘内部行星形成区域的影响。德国马克斯-普朗克天文学研究所的玛丽亚-克劳迪娅-拉米雷斯-坦努斯(MaríaClaudiaRamírez-Tannus)说:"韦伯望远镜是唯一具有空间分辨率和灵敏度来研究大质量恒星形成区行星形成盘的望远镜。"天文学家们的目标是利用韦伯中红外仪器(MIRI)上的中分辨率分光计来描述龙虾星云中的岩石行星形成盘区的物理特性和化学成分。第一项成果的重点是位于Pismis24星团中被称为XUE1的原行星盘。研究小组成员、瑞典斯德哥尔摩大学的ArjanBik补充说:"只有中红外成像仪的波长范围和光谱分辨率才能让我们探测到岩质行星形成的温热气体和尘埃的分子清单和物理条件。"由于"XUE1"位于NGC6357中几颗大质量恒星附近,科学家们预计它在整个生命周期中一直暴露在大量紫外线辐射下。然而,在这种极端环境下,研究小组仍然检测到了一系列分子,而这些分子正是构成陆地行星的基石。研究小组成员、荷兰拉德布德大学的伦斯-沃特斯(RensWaters)说:"我们发现,薛厄一号周围的内盘与附近恒星形成区的内盘非常相似。我们探测到了水和其他分子,如一氧化碳、二氧化碳、氰化氢和乙炔。不过,发现的辐射比一些模型预测的要弱。这可能意味着外盘半径较小。"拉德布德大学的LarsCuijpers补充说:"我们感到惊讶和兴奋,因为这是在这种极端条件下首次探测到这些分子。研究小组还在星盘表面发现了部分结晶的硅酸盐小尘埃。这被认为是岩石行星的组成部分。"这些结果对于岩质行星的形成来说是个好消息,因为科学小组发现,内盘的条件与位于恒星形成区附近、只有低质量恒星形成的、经过充分研究的盘中的条件相似。这表明岩质行星可以在比以前认为的更广泛的环境中形成。研究小组指出,"XUE"计划的其余观测对于确定这些条件的共性至关重要。拉米雷斯-坦努斯说:"XUE1向我们表明,形成岩质行星的条件是存在的,所以下一步就是检查这种情况有多普遍。我们将观测同一区域的其他星盘,以确定观测到这些条件的频率"。这些结果已发表在《天体物理学报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1401283.htm手机版:https://m.cnbeta.com.tw/view/1401283.htm

封面图片

NASA韦伯太空望远镜探测到岩石行星形成区的水蒸气

NASA韦伯太空望远镜探测到岩石行星形成区的水蒸气美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜的中红外仪器(MIRI)收集到的新数据探测到了该系统内盘的水蒸气,距离恒星不到1亿英里(1.6亿公里)--这正是岩质陆地行星可能形成的区域。(值得注意的是,这是首次在一个已被证实拥有两颗或更多原行星的圆盘的陆地区域检测到水。"我们曾在其他星盘中看到过水,但没有在如此近距离和目前正在形成行星的系统中看到过水。在韦伯望远镜之前,我们无法进行这种测量,"第一作者、德国海德堡马克斯-普朗克天文学研究所(MPIA)的朱莉娅-佩罗蒂(GiuliaPerotti)说。"这一发现极其令人兴奋,因为它探测到了与地球类似的岩质行星通常形成的区域,"该论文的共同作者、马克斯-普朗克天文学研究所所长托马斯-亨宁补充说。亨宁是韦伯中红外探测器(MIRI)的联合首席研究员,该探测器进行了探测,他也是采集数据的MINDS(MIRI中红外盘巡天)计划的首席研究员。利用韦伯中红外光谱仪(MIRI)获得的PDS70的原行星盘光谱显示了许多水蒸气发射线。科学家们确定,水位于该系统的内盘,距离恒星不到1亿英里--该区域可能正在形成岩质的类地行星。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)PDS70是一颗K型恒星,比太阳温度低,估计年龄为540万年。就具有行星形成盘的恒星而言,这颗恒星的年龄相对较大,因此水蒸气的发现令人吃惊。随着时间的推移,行星形成盘中的气体和尘埃含量会逐渐减少。要么是中心恒星的辐射和风将这些物质吹走,要么是尘埃长成更大的物体,最终形成行星。由于之前的研究未能在类似老化的星盘中心区域探测到水,天文学家怀疑水可能无法在严酷的恒星辐射中存活,从而导致形成岩石行星的环境变得干燥。天文学家尚未在PDS70的内盘中探测到任何正在形成的行星。不过,他们确实看到了以硅酸盐形式存在的建造岩石世界的原材料。水蒸气的探测意味着,如果岩质行星正在那里形成,那么它们从一开始就有水可用。"我们发现了相对较多的小尘粒。结合我们对水蒸气的探测,内盘是一个非常令人兴奋的地方,"合著者、荷兰拉德布德大学的伦斯-沃特斯(RensWaters)说。这些水的起源于哪里?这一发现提出了水从何而来的问题。MINDS小组考虑了两种不同的情况来解释他们的发现。一种可能是,水分子是在氢原子和氧原子结合时在我们探测到的地方形成的。第二种可能是,包裹着冰的尘埃粒子正从低温的外盘被传送到高温的内盘,在那里水冰升华并变成水蒸气。这种运输系统将是令人惊讶的,因为尘埃必须穿过两颗巨行星所形成的巨大空隙。这一发现提出的另一个问题是,在恒星的紫外线照射下,任何水分子都会被击碎,那么水是如何在如此靠近恒星的地方存活下来的呢?最有可能的是,周围的物质如尘埃和其他水分子起到了保护作用。因此,在PDS70内盘探测到的水可以在被破坏后存活下来。最终,研究小组将使用韦伯望远镜的另外两台仪器--NIRCam(近红外照相机)和NIRSpec(近红外摄谱仪)来研究PDS70系统,以求获得更深入的了解。这些观测是第1282号保证时间观测计划的一部分。这一发现已发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1372995.htm手机版:https://m.cnbeta.com.tw/view/1372995.htm

封面图片

韦伯望远镜在周边的行星系统中发现了水

韦伯望远镜在周边的行星系统中发现了水天文学家检测到附近一颗恒星附近有水蒸气旋转,这表明围绕它形成的行星有一天可能能够支持生命。这个年轻的行星系统被称为PDS70,距离我们370光年。其中心的恒星大约有540万年的历史,温度比我们的太阳还要低。围绕它旋转的是两颗已知的气态巨行星,研究人员最近确定其中一颗PDS70b可能与正在形成的第三颗“兄弟”行星共享其轨道。两种不同的气体和尘埃盘(形成恒星和行星所需的成分)围绕着恒星。内盘和外盘之间的间隙长达50亿英里(80亿公里)。气态巨行星位于间隙中,它们围绕恒星运行。韦伯望远镜的中红外仪器检测到距离恒星不到1亿英里(1.6亿公里)的内盘中水蒸气的特征。天文学家认为,如果PDS70与我们的太阳系类似,那么内盘可能会形成与太阳系类似的小型岩石行星。在我们的系统中,地球的轨道距太阳9300万英里(1.5亿公里)。上周在《自然》杂志上发表了一项。——

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人