科学家找到从农业废弃物中提取与制造聚酰胺的新方法

科学家找到从农业废弃物中提取与制造聚酰胺的新方法聚酰胺具有韧性和柔韧性,可以扭曲和编织而不会断裂。图片来源:LorenzManker/EPFL这项发表在《自然-可持续发展》(NatureSustainability)杂志上的研究介绍了一种利用从农业废弃物中提取的糖核制造聚酰胺的新方法,聚酰胺是一类以强度和耐久性著称的塑料,其中最著名的是尼龙。这种新方法利用了一种可再生资源,同时还能高效地实现这种转变,并将对环境的影响降到最低。高精度挤出3D打印长丝。图片来源:LorenzManker/EPFL环境效益和效率Luterbacher说:"典型的化石基塑料需要芳香族基团来赋予塑料刚性--这使塑料具有硬度、强度和耐高温等性能特性。在这里,我们得到了类似的结果,但使用的是糖结构,这种结构在自然界中无处不在,而且通常完全无毒,可以提供刚性和性能特性。"该研究的第一作者洛伦兹-曼克(LorenzManker)和他的同事们开发出了一种无催化剂工艺,可将木糖二甲基乙二酸酯(一种直接从木材或玉米棒等生物质中提取的稳定碳水化合物)转化为高质量的聚酰胺。该工艺的原子效率高达97%,令人印象深刻,这意味着几乎所有的起始材料都被用于最终产品,从而大大减少了浪费。挤压后的染色和天然聚酰胺纤维。图片来源:LorenzManker/EPFL生物基聚酰胺的性能可与化石基聚酰胺相媲美,为各种应用提供了一种前景广阔的替代材料。更重要的是,这些材料在多次机械循环中表现出显著的弹性,保持了其完整性和性能,而这正是管理可持续材料生命周期的关键因素。这些创新型聚酰胺的潜在应用领域非常广泛,从汽车零件到消费品,都能显著减少碳足迹。研究小组的技术经济分析和生命周期评估表明,与包括尼龙(如尼龙66)在内的传统聚酰胺相比,这些材料的价格具有竞争力,全球变暖潜能值最高可降低75%。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424203.htm手机版:https://m.cnbeta.com.tw/view/1424203.htm

相关推荐

封面图片

新方法可在数秒内将渔业废弃物转化为有价值的纳米材料

新方法可在数秒内将渔业废弃物转化为有价值的纳米材料由于碳基纳米材料的低毒性、化学稳定性和非凡的电和光学特性,它们正被越来越多地用于电子、能源转换和存储、催化和生物医学。CNO,即碳纳米离子,也绝不是一个例外。1980年首次描述的CNO是由富勒烯的同心壳组成的纳米结构,类似于笼中笼。它们有几个理想的品质,包括大表面积和高导电性和导热性。PC版:https://www.cnbeta.com/articles/soft/1323465.htm手机版:https://m.cnbeta.com/view/1323465.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

科学家发现增强免疫系统的新方法

科学家发现增强免疫系统的新方法研究人员开发出一种使用双特异性单域抗体(称为BiCEs)的方法,这种抗体能激活补体系统,比目前的方法更有效地靶向杀死癌细胞。这种创新方法能调动人体更多的免疫反应,从而彻底改变癌症免疫疗法,具有临床应用潜力。在这项新研究中,研究人员开发出一种使用双特异性单域抗体(称为BiCEs)激活补体系统的方法。这些抗体可以同时与两个不同的目标结合:一种名为C1q的补体蛋白和一种存在于癌细胞表面的特定蛋白。通过连接C1q和癌细胞蛋白,BiCE分子能强烈激活补体系统,从而特异性地杀死目标癌细胞。CommitBiologics、基尔克里斯蒂安-阿尔布雷希茨大学和奥胡斯大学的研究人员发现了一种增强免疫系统的新方法。左起斯蒂芬-蒂尔、安妮特-G.Hansen、DennisV.Pedersen、NickS.Laursen、HeidiGytzOlesen、GregersR.Andersen和MikaelB.L.Winkler。资料来源:奥胡斯大学LisbethHeilesen与目前临床上使用的抗体相比,BiCE分子在激活补体系统和杀死癌细胞方面更胜一筹。与传统癌症疗法相比,这种新方法有几大优势,其中之一就是利用先天免疫系统的力量,有可能激活更广泛的免疫反应,包括招募免疫细胞进入肿瘤微环境,以增强抗肿瘤活性。这项研究结果不仅彰显了奥胡斯大学开展的创新研究,也为进一步推动癌症免疫疗法领域的发展铺平了道路。展望未来,这项合作产生的分拆企业旨在将研究成果转化为临床应用。...PC版:https://www.cnbeta.com.tw/articles/soft/1377017.htm手机版:https://m.cnbeta.com.tw/view/1377017.htm

封面图片

科学家开发出新型纳米材料 带来控制火灾的新方法

科学家开发出新型纳米材料带来控制火灾的新方法高温火焰对于生产多种材料至关重要。然而,控制火焰及其与目标材料的相互作用是一项挑战。科学家们现在已经开发出一种方法,利用分子薄保护层来控制火焰的热量与材料的相互作用--驯服火焰,让用户能够精细调整加工材料的特性。PC版:https://www.cnbeta.com.tw/articles/soft/1377999.htm手机版:https://m.cnbeta.com.tw/view/1377999.htm

封面图片

科学家发现战胜致命真菌的新方法

科学家发现战胜致命真菌的新方法我们大多数人都熟悉脚气,这是一种相对无害的健康问题,去药店买点药就能解决。但其他真菌感染更为严重,念珠菌、隐球菌和曲霉菌每年造成数百万人死亡。与细菌对抗生素的耐药性一样,真菌对药物的耐药性也在全球范围内不断增长,除非现在就采取措施,否则在不久的将来,死亡人数很可能会上升。目前,只有三大类抗真菌药物,它们都通过破坏真菌细胞周围的屏障发挥作用。矛盾的是,尽管它们都能破坏屏障,但目前的治疗方法实际上非常特殊,也就是说,杀死一种真菌的方法可能无法杀死另一种真菌。一种真菌(C.neoformans)在三种条件下生长:未处理、使用亚致死剂量的脂肪酸合成酶抑制剂NPD6433处理和使用氟康唑处理。经NPD6433处理后,真菌的数量和毒力均有所降低。资料来源:理化学研究所这组研究人员希望找到另一种对抗有害真菌的方法,一种可以对抗多种真菌的方法。他们的方法是首先筛选结构多样的理化学研究所天然产物库(NPDepo),以对抗四种致病性酵母菌--三种念珠菌和一种隐球菌--这些酵母菌已被世界卫生组织确定为重要的人类病原体。他们一直在寻找一种能对所有四种酵母菌都产生影响的物质,这表明它可能对多种真菌有效。经过筛选,研究人员发现了几种化合物,它们能使这四种真菌中每种真菌的生长速度至少降低50%。在这三种化合物中,对人体细胞毒性最小的一种也能减少烟曲霉的生长,烟曲霉是一种极为常见的真菌,对免疫力低下的人来说是致命的。理化学研究所NPDepo将这种化合物命名为NPD6433。下一步是找出它的作用。针对近1000个不同的基因,研究人员研究了当酵母缺少一个基因拷贝时,NPD6433对酵母生长的抑制程度。他们发现,只有一个基因(脂肪酸合成酶)的减少会使酵母更容易受到NPD6433的影响。这一结果意味着,NPD6433很可能是通过抑制脂肪酸合成酶发挥作用,从而阻止脂肪酸在真菌细胞内生成。进一步的实验表明,NPD6433和另一种脂肪酸合成酶抑制剂Cerulenin能够杀死培养物中的多种酵母菌。最后一项实验测试了NPD6433在实验室活体模型生物--秀丽隐杆线虫(Caenorhabditiselegans)--中的治疗效果,秀丽隐杆线虫感染了一种致病性酵母菌,这种酵母菌通过肠道侵入人体后可引起全身感染。之所以选择秀丽隐杆线虫,是因为它的肠道和我们的一样。试验结果表明,用NPD6433治疗受感染的蠕虫后,死亡率降低了约50%。重要的是,对感染了对标准抗真菌药物有抗药性的酵母菌的蠕虫来说,情况也是如此。"耐药性真菌是一个日益严重的问题,而开发新药的线索为对付这些不断演变的病原体带来了希望,"该研究的主要作者YokoYashiroda说。"我们的研究表明,以脂肪酸合成为靶点是治疗真菌感染的一种很有前景的替代疗法,而且可能不需要为个别物种量身定制解决方案。"...PC版:https://www.cnbeta.com.tw/articles/soft/1374785.htm手机版:https://m.cnbeta.com.tw/view/1374785.htm

封面图片

钙过量 - 科学家开发出杀死癌细胞的新方法

钙过量-科学家开发出杀死癌细胞的新方法钙离子在细胞功能中起着至关重要的作用,但如果钙离子含量过高,就会对细胞造成危害。研究人员最近开发出一种化合物,可通过调节细胞内的钙离子流入来靶向摧毁肿瘤细胞。这种创新方法利用了肿瘤组织内已有的钙离子,无需外部钙源。《AngewandteChemie》杂志上发表的一篇论文详细介绍了这一研究成果。生物细胞需要钙离子来维持线粒体(细胞的动力室)的正常运转。然而,如果钙离子过多,线粒体过程就会失衡,细胞就会窒息。由韩国首尔梨花女子大学的尹珠英(JuyoungYoon)领导的研究小组与来自中国的研究小组一起,利用这一过程开发出了一种协同抗肿瘤药物,它可以打开钙离子通道,从而在肿瘤细胞内引发致命的钙离子风暴。研究人员瞄准了两个通道,第一个是外膜上的通道,另一个是内质网中的钙通道,内质网也是一个储存钙离子的细胞器。位于外膜的通道在暴露于大量活性氧(ROS)时打开,而内质网中的通道则被一氧化氮分子激活。为了产生能打开外膜钙通道的ROS,研究人员使用了染料吲哚菁绿。这种生物活性剂可通过近红外线照射激活,不仅能引发导致ROS的反应,还能使环境升温。研究小组解释说,局部高温会激活另一种活性剂BNN-6释放一氧化氮分子,从而打开内质网中的通道。在肿瘤细胞系试验成功后,研究小组又在植入肿瘤的小鼠体内测试了一种注射制剂。为了创造出一种生物兼容的复合药物,研究人员将活性成分装入了微小的改性多孔硅珠中,这种硅珠对人体无害,但能被肿瘤细胞识别并转运到细胞内。将这些微珠注入小鼠血液后,研究人员观察到药物在肿瘤内积聚。照射近红外线成功地触发了作用机制,接受这种制剂的小鼠几天后肿瘤就消失了。作者强调,这种离子流入方法可能也适用于相关的生物医学研究领域,因为类似的机制可以激活不同于钙离子通道的离子通道,从而找到新的治疗方法。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415569.htm手机版:https://m.cnbeta.com.tw/view/1415569.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人