天文学家揭开天体486958 Arrokoth冰冻之谜 重新定义柯伊伯带理论

天文学家揭开天体486958Arrokoth冰冻之谜重新定义柯伊伯带理论来自新视野号航天器数据的柯伊伯带天体2014MU69原始接触双星的合成图像。图片来源:NASA/JHUAPL/SwRI/RomanTkachenko由布朗大学塞缪尔-伯奇(SamuelBirch)博士和SETI研究所高级研究科学家奥尔坎-乌穆尔汉(OrkanUmurhan)博士共同撰写的论文《486958阿罗科斯星内一氧化碳冰和气体的保留》以阿罗科斯星为研究案例,提出许多柯伊伯带天体(KBO)--太阳系诞生之初的残余物--仍可能保留其原始的挥发性冰,从而挑战了以往关于这些古老实体进化路径的观点。左图由多色可见光成像相机(MVIC)拍摄,该相机是新视野号上拉尔夫仪器的一部分。拍摄于2019年1月1日,距离其最近接近仅7分钟,当时航天器距离地表仅约6700千米。美国国家航空航天局、约翰-霍普金斯大学应用物理实验室和西南研究院为这一出色的拍摄成果做出了贡献。右图显示了阿罗科斯季节性表皮深度的轨道平均温度,该温度是根据Umurhan等人的2022年方法计算得出的。比例尺单位为千米,视角方向与左图类似,向下看向南极。资料来源:美国国家航空航天局、约翰-霍普金斯大学应用物理实验室和西南研究所以前的KBO演化模型需要帮助来预测这些寒冷、遥远天体中挥发物的命运。许多模型依赖于繁琐的模拟或有缺陷的假设,低估了这些物质可能持续的时间。新研究提供了一种更简单而有效的方法,将这一过程比作气体如何通过多孔岩石逸出。它表明,像阿罗科斯这样的KBO可以将其挥发性冰保持数十亿年,形成一种地表下大气层,从而减缓冰的进一步流失。"我想强调的是,最关键的是,我们纠正了人们几十年来对这些非常寒冷和古老的天体所假设的物理模型中的一个严重错误,"Umurhan说。"这项研究可能成为重新评估彗星内部演化和活动理论的最初推动力。"上述模型是一个多孔碎石堆,由CO和难熔无定形H2O冰混合而成,具有特定的孔半径rp。顶层(棕色)仅在一个轨道上进行热处理,导致该层CO(包括冰和气体)的损失。在升华前沿rb(深蓝色)下方,原有的一氧化碳冰体积保持不变。随着时间的推移,随着升华前沿向下移动(模型中向右移动),嵌入无定形H2O冰基质中的CO冰开始升华。产生的气体(浅蓝色表示)随后充满孔隙并向上移动,远离升华前沿。资料来源:SETI研究所这项研究挑战了现有的预测,为了解彗星的性质及其起源开辟了新的途径。KBOs中存在的这种挥发性冰支持了一种引人入胜的说法,即这些天体是"冰炸弹",它们在改变轨道接近太阳时被激活并表现出彗星行为。这一假设有助于解释29P/Schwassmann-Wachmann彗星的强烈爆发活动等现象,有可能改变人们对彗星的认识。作为即将进行的CAESAR任务提案的联合研究员,研究人员正在采用一种全新的方法来了解彗星体的演变和活动。这项研究对未来的探索具有重要意义,同时也提醒人们太阳系的不解之谜正等待着我们去揭开。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425479.htm手机版:https://m.cnbeta.com.tw/view/1425479.htm

相关推荐

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J.daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysicalJournal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B20402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录--仅仅24光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了30多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(RogerRomani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并--一些线索表明,这对双星是通过多个星系合并形成的。首先,B20402+379是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到--有史以来的第一次记录是在2015年通过引力波的探测--但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B20402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B20402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生TirthSurti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年--太远了,不可能像在B20402+379中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于1980年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422216.htm手机版:https://m.cnbeta.com.tw/view/1422216.htm

封面图片

天文学家揭开球状星团的起源的神秘面纱

天文学家揭开球状星团的起源的神秘面纱科学家们发现了强有力的证据,证明当球状星团在130亿年前形成时,球状星团内存在着超大质量的恒星。这里是距离地球22000光年的球状星团M13的图像,它由100万颗恒星组成,被挤压在150光年宽的空间里。资料来源:HSTSTScINASAESA了解这一独特的特征代表了天文学领域的一个重大难题。此前,来自日内瓦大学和巴塞罗那大学以及巴黎天体物理研究所(隶属于法国国家科学研究中心和索邦大学)的研究人员猜想,他们已经在球状原星团中探测到了这些恒星的最初化学证据。这些原星团是在大爆炸后大约4.4亿年才出现的。这些结果是通过詹姆斯-韦伯太空望远镜的观测获得的,发表在《天文学和天体物理学》杂志上。球状星团是分布在一个球体中的非常密集的恒星群,其半径从十几到一百光年不等。它们可以包含多达100万颗恒星,在所有类型的星系中都能找到。我们的星系就有大约180个这样的星系。它们最大的谜团之一是其恒星的组成:为什么会有如此多的变化?例如,氧气、氮气、钠和铝的比例在每颗恒星之间都有所不同。然而,它们都是在同一时间,在同一片气体云中诞生的。天体物理学家说的是"丰度异常"。寿命很短的怪物来自日内瓦大学(UNIGE)和巴塞罗那大学以及巴黎天体物理研究所(CNRS和索邦大学)的一个团队在解释这一现象方面取得了新进展。在2018年,它已经开发了一个理论模型,根据这个模型,超大质量的恒星在这些星团的形成过程中会"污染"原来的气体云,以异质的方式使其恒星富含化学元素。"今天,由于詹姆斯-韦伯太空望远镜收集的数据,我们相信我们已经发现了这些非凡恒星存在的第一个线索,"UNIGE理学院天文学系的全职教授CorinneCharbonnel解释说,他也是该研究的第一作者。这些天体怪物的质量是太阳的5000到10000倍,其中心温度是太阳的5倍(7500万℃)。但是要证明它们的存在是很复杂的。''球状星团的年龄在100到130亿年之间,而超级恒星的最大寿命是200万年。因此,它们很早就从目前可以观测到的星团中消失了。"巴塞罗那大学ICREA教授、该研究的共同作者MarkGieles解释说:"只剩下间接的痕迹。"通过光线揭示出来由于詹姆斯-韦伯望远镜的非常强大的红外视力,共同作者能够支持他们的假设。该卫星捕捉到了我们宇宙中迄今为止已知的最遥远和最年轻的星系之一所发出的光。GN-z11位于大约133亿光年处,只有几千万年的历史。在天文学中,对宇宙物体的光谱分析是确定其特征的一个关键因素。在这里,这个星系所发出的光提供了两个有价值的信息。"已经确定它含有非常高比例的氮和非常高密度的恒星,"UNIGE理学院天文学系副教授DanielSchaerer说,他是这项研究的共同作者。"这表明在这个星系中正在形成几个球状星团,而且它们仍然藏有一颗活跃的超大质量恒星。氮气的强烈存在只能用氢气在极高温度下的燃烧来解释,只有超大质量恒星的核心才能达到这种温度,正如我们团队的硕士生LauraRamirez-Galeano的模型所示,"CorinneCharbonnel解释说。这些新结果加强了国际团队的模型。这个模型是目前唯一能够解释球状星团中丰度异常的模型。科学家们的下一步将是利用詹姆斯-韦伯的数据,在遥远的星系中形成的其他球状星团上测试这个模型的有效性。...PC版:https://www.cnbeta.com.tw/articles/soft/1367057.htm手机版:https://m.cnbeta.com.tw/view/1367057.htm

封面图片

天文学家破解 "BOAT" - 解密宇宙最亮爆炸之谜

天文学家破解"BOAT"-解密宇宙最亮爆炸之谜自从巨型望远镜同时捕捉到BOAT信号后,全世界的天体物理学家都在争先恐后地解释伽马射线暴(GRB)的亮度及其余辉缓慢消退的奇特现象。现在,一个包括英国巴斯大学物理系亨德里克-范-埃尔滕博士在内的国际研究小组已经做出了解释:最初的伽马射线暴(被称为GRB221009A)直射地球,而且在它的后方还拖拽着异常大量的恒星物质。研究小组的这一发现发表在今天的著名期刊《科学进展》(ScienceAdvances)上。马里兰大学和华盛顿特区乔治华盛顿大学刚毕业的博士生布兰登-奥康纳博士是这项研究的第一作者。范埃尔顿博士是余辉理论分析的共同负责人,他说:"研究这个谜题的其他研究人员也得出了这样的结论,即喷流是直接对着我们的--就像花园里的水管直接对着你喷射一样--这无疑在一定程度上解释了为什么我们能看到如此明亮的喷流。"但令人费解的是,我们根本看不到喷流的边缘。尼尔-盖尔斯-斯威夫特天文台的X射线望远镜捕捉到的"史上最亮伽马射线暴"余辉。图片来源:NASA/Swift/A.Beardmore(莱斯特大学)"余辉的缓慢消退并不是狭窄气体喷流的特征,了解到这一点后,我们怀疑爆炸的强度另有原因,而我们的数学模型也证实了这一点。我们的工作清楚地表明,GRB具有独特的结构,观测结果逐渐显示,在通常预计会出现孤立喷流的地方,一个狭窄的喷流嵌入了一个更宽的气体外流中。"那么,是什么让这个GRB比正常情况下更宽呢?研究人员有了一个理论。正如范埃尔顿博士解释的那样"GRB喷流需要穿过形成它们的坍缩恒星,在这种情况下,我们认为造成差异的是恒星物质和喷流之间发生了大量的混合,以至于冲击加热的气体一直出现在我们的视线中,直到任何特征性的喷流特征都消失在余辉的整体发射中。"他补充说:"我们的模型不仅有助于理解BOAT,还有助于理解以前的亮度记录保持者,这些记录曾让天文学家对它们缺乏喷流特征感到困惑。这些GRB和其他GRB一样,在发生时一定是直接朝向我们的,因为同时向所有方向释放那么多能量是不符合物理学原理的。似乎存在一类特殊的事件,它们既极端又能掩盖其气体流的定向性。未来对发射射流的磁场以及承载它们的大质量恒星的研究,应该有助于揭示这些GRB如此罕见的原因"。奥康纳博士说:"超长GRB221009A是有记录以来最亮的GRB,它的余辉打破了所有波长的记录。由于这次爆发如此明亮,而且就在附近(从宇宙学角度讲:它发生在距离地球24亿光年的小距离上),我们认为这是一个千年难得一遇的机会,可以解决有关这些爆发的一些最基本的问题,从黑洞的形成到暗物质模型的检验。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372343.htm手机版:https://m.cnbeta.com.tw/view/1372343.htm

封面图片

天文学家揭开脉冲星 PSR J1023+0038 奇特的亮度变化之谜

天文学家揭开脉冲星PSRJ1023+0038奇特的亮度变化之谜通过对包括欧洲南方天文台(ESO)三个设施在内的12台地面和太空望远镜的广泛天文研究,天文学家发现了脉冲星(一种超高速旋转的死星)的奇特行为。据了解,这个神秘的天体几乎不断地在两种亮度模式之间切换,直到现在这还是一个谜。但天文学家现在发现,脉冲星在极短的时间内突然喷射出的物质是造成这种奇特切换的原因。纽约大学阿布扎比分校研究员、意大利国家天体物理研究所(INAF)下属研究员玛丽亚-克里斯蒂娜-巴格里奥(MariaCristinaBaglio)说:"我们目睹了非同寻常的宇宙事件,在数十秒的极短时间内,从一个以难以置信的高速旋转的小型致密天体中向太空发射出大量物质,类似于'宇宙炮弹'。"她是最近发表在《天文学与天体物理学》(Astronomy&Astrophysics)杂志上论文的第一作者。脉冲星是一种快速旋转的磁星,会向太空发射一束电磁辐射。当它旋转时,这束射线横扫整个宇宙--就像灯塔的光束扫描周围环境一样--当它与地球的视线相交时,就会被天文学家探测到。这使得从我们的星球上看这颗恒星的亮度出现脉冲变化。PSRJ1023+0038,简称J1023,是一种行为怪异的特殊脉冲星。它位于大约4500光年外的六分仪星座,紧紧地围绕着另一颗恒星运行。在过去的十年里,这颗脉冲星一直在积极地从这颗伴星上吸取物质,这些物质在脉冲星周围聚集成一个圆盘,并慢慢地向脉冲星坠落。这幅艺术家印象图展示了脉冲星PSRJ1023+0038从它的伴星上窃取气体的过程。这些气体聚集在脉冲星周围的圆盘中,慢慢地向脉冲星坠落,最终以狭窄的喷流形式排出。此外,还有一股粒子风从脉冲星上吹走,这里用一团非常小的点表示。这股风与下坠的气体发生碰撞,将其加热,使系统发出耀眼的X射线、紫外线和可见光。最终,这些高温气体沿着喷流被排出,脉冲星又回到了最初较暗的状态,周而复始。据观测,这颗脉冲星每隔几秒或几分钟就会在这两种状态之间不停地切换。资料来源:ESO/M.自从物质积累过程开始后,扫描光束几乎消失了,脉冲星开始不停地在两种模式之间切换。在"高"模式下,脉冲星发出明亮的X射线、紫外线和可见光;而在"低"模式下,脉冲星在这些频率下的亮度较暗,并发出更多的无线电波。脉冲星可以在每种模式下停留几秒或几分钟,然后在几秒钟内切换到另一种模式。迄今为止,天文学家一直对这种切换感到困惑。西班牙巴塞罗那空间科学研究所研究员、论文共同第一作者弗朗切斯科-科蒂-泽拉蒂(FrancescoCotiZelati)说:"为了了解这颗脉冲星的行为,我们开展了史无前例的观测活动,动用了十几台最先进的地面和星载望远镜。这次活动包括欧洲南方天文台的甚大望远镜(VLT)和欧洲南方天文台的新技术望远镜(NTT)(探测可见光和近红外线),以及阿塔卡马大毫米波/亚毫米波阵列(ALMA),欧洲南方天文台是该阵列的合作伙伴。在2021年6月的两个晚上,他们观测到该系统在高低模式之间进行了280多次切换。""我们发现,模式切换源于脉冲星风(吹离脉冲星的高能粒子流)与流向脉冲星的物质之间错综复杂的相互作用,"隶属于INAF的科蒂-泽拉提(CotiZelati)说。在低模式下,流向脉冲星的物质以垂直于圆盘的狭窄喷流形式被排出。渐渐地,这些物质越积越接近脉冲星,当这种情况发生时,它就会被脉冲星吹出的风击中,导致物质升温。这个系统现在处于高模式,在X射线、紫外线和可见光下发出耀眼的光芒。最终,脉冲星通过喷流带走了这些热物质。随着圆盘中热物质的减少,系统发出的亮度也会降低,从而切换回低速模式。虽然这一发现揭开了J1023奇怪行为的神秘面纱,但天文学家们仍然需要从研究这一独特的系统中学到很多东西,而欧洲南方天文台的望远镜将继续帮助天文学家们观测这颗奇特的脉冲星。特别是目前正在智利建造的欧洲南方天文台的超大望远镜(ELT),它将为J1023的开关机制提供前所未有的视角。"ELT将使我们能够深入了解脉冲星周围流入物质的丰度、分布、动态和能量如何受到模式切换行为的影响,"INAF布雷拉天文台研究主任、本研究的共同作者SergioCampana总结说。...PC版:https://www.cnbeta.com.tw/articles/soft/1401325.htm手机版:https://m.cnbeta.com.tw/view/1401325.htm

封面图片

天文学家利用多重成像的引力透镜揭开超新星揭开暗物质之谜

天文学家利用多重成像的引力透镜揭开超新星揭开暗物质之谜放大到超新星兹威基:从帕洛玛ZTF相机的一小部分开始,即64个"象限"中的一个,每个象限都包含了数以万计的恒星和星系,放大后我们可以看到分别在智利和夏威夷的较大和较清晰的VLT和凯克望远镜进行的详细探索。在分辨率最高的Keck图像上,可以看到超新星Zwicky的四个几乎相同的"副本"。多重图像的产生是由于一个前景星系造成的空间扭曲,在中心位置也可以看到,大约在超新星爆炸地点和地球之间的一半。资料来源:J.Johansson由斯德哥尔摩大学奥斯卡-克莱因中心的ArielGoobar领导的团队发现了一个不寻常的Ia型超新星,即SNZwicky。Ia型超新星在测量宇宙距离方面发挥了关键作用。它们被用于发现宇宙的加速膨胀,导致了2011年诺贝尔物理学奖的获得。新发现的超新星由于其非凡的亮度和多图像的配置而脱颖而出,这是阿尔伯特-爱因斯坦的广义相对论所预测的一种罕见现象。在特殊情况下,大型天体充当了宇宙放大镜的角色。这些放大镜也创造了在天空中不同位置可见的多条光路。在帕洛玛天文台的兹威基瞬变设施探测到这颗超新星的几周内,研究小组用夏威夷毛纳克亚山顶的W.M.凯克天文台和智利的甚大望远镜的自适应光学仪器观测了SNZwicky。凯克天文台的观测解析了多张图像,证实了不寻常的超新星亮度背后的强透镜假说。美国宇航局的哈勃太空望远镜也观测到了SNZwicky的四张图像。在SNZwicky中观察到的多重成像透镜效应是由一个前景星系施加的引力场作为引力透镜的结果。在特殊情况下,大型天体充当了宇宙放大镜的角色。这些放大镜也创造了在天空中不同位置可见的多条光路。观察多幅图像不仅可以揭示强光超新星的细节,还可以提供一个独特的机会来探索导致光线偏转的前景星系的特性。这可以让天文学家更多地了解星系的内部核心和暗物质。凝聚型超新星也是非常有前途的工具,可以完善描述宇宙膨胀的模型。随着科学家们继续解开宇宙的复杂性,SNZwicky的多重成像透镜的发现为研究引力透镜现象及其对宇宙学的影响提供了新的途径。这是揭开暗物质、暗能量和我们宇宙的最终命运之谜的重要一步。"斯德哥尔摩大学的博士后、该研究的共同作者JoelJohansson说:"SNZwicky的极度放大给了我们一个前所未有的机会来研究遥远的Ia型超新星爆炸的特性,当我们用它们来探索暗能量的性质时,我们需要这些特性。该项目的主要研究者、斯德哥尔摩大学奥斯卡-克莱因中心主任ArielGoobar教授对这一重大发现表达了他的热情:"SNZwicky的发现不仅展示了现代天文仪器的卓越能力,也代表着我们在寻求了解塑造我们宇宙的基本力量方面迈出了重要一步"。斯德哥尔摩大学物理系奥斯卡-克莱因中心领导发现SNZwicky的团队:从左至右依次为EdvardMörtsell,SteveSchulze,JoelJohansson,AnaSaguésCarracedo,ArielGoobar和NikkiArendse。资料来源:奥斯卡-克莱因中心该团队的研究结果已经发表在《自然-天文学》上,论文的题目是"发现具有放大的标准烛光SNZwicky的引力透镜星系群"。该出版物对SNZwicky进行了全面的分析,包括从世界各地的望远镜收集的成像和光谱数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1368109.htm手机版:https://m.cnbeta.com.tw/view/1368109.htm

封面图片

天文学家解决困扰人们60年的类星体之谜

天文学家解决困扰人们60年的类星体之谜科学家们已经揭开了类星体--宇宙中最明亮、最强大的天体--的最大谜团之一,发现它们是由星系碰撞引发的:类星体在60年前首次被发现,其亮度相当于一万亿颗恒星挤在太阳系大小的空间里,但直到现在,什么能引发如此强大的活动仍然是个谜。通过观察48个拥有类星体的星系,并将它们与100多个非类星体的星系进行比较,科学家们发现,这种现象是由星系碰撞引发的。当两个星系相撞时,引力将大量的气体推向碰撞产生的残余星系系统中心的超大质量黑洞--就在气体被黑洞吞噬之前,它以辐射的形式释放出巨大的能量,从而产生了类星体。银河系在大约50亿年后与仙女座星系相撞时,可能会经历自己的类星体。当研究人员使用拉帕尔马的艾萨克-牛顿望远镜进行深度成像观测时,发现了这些碰撞,在星系的外部区域存在着扭曲的结构,这些结构是类星体的家园。大多数星系在其中心都有超大质量黑洞。它们也包含大量的气体--但大多数时候,这些气体在距离星系中心很远的地方运行,不在黑洞的范围内。星系之间的碰撞将气体推向星系中心的黑洞;就在气体被黑洞吞噬之前,它以辐射的形式释放出巨大的能量,从而产生了类星体特有的光辉。类星体的点燃会对整个星系产生巨大的影响--它可以将其余的气体赶出星系,这使得星系在未来的几十亿年里都无法形成新的恒星。这是第一次以如此高的灵敏度对这种规模的类星体样本进行成像。通过比较对48个类星体及其宿主星系的观测和100多个非类星体星系的图像,研究人员得出结论,宿主类星体的星系与其他星系相互作用或碰撞的可能性大约是三倍。这项研究为我们了解这些强大的天体是如何被触发和推动的提供了一个重要的步骤。谢菲尔德大学物理和天文学系的CliveTadhunter教授说:"类星体是宇宙中最极端的现象之一,我们所看到的可能代表了我们自己的银河系在大约50亿年后与仙女座星系碰撞时的未来。观察这些事件并最终了解它们发生的原因是令人兴奋的--但值得庆幸的是,在相当长的一段时间内,地球不会接近这些世界末日事件之一。"类星体对天体物理学家来说很重要,因为由于它们的亮度,它们在很远的距离上就很突出,因此作为宇宙历史上最早的时代的灯塔。赫特福德大学的博士后研究员乔尼-皮尔斯博士解释说:"这是一个全世界的科学家都热衷于了解的领域--美国宇航局詹姆斯-韦伯太空望远镜的主要科学动机之一就是研究宇宙中最早的星系,而韦伯甚至能够探测到最遥远的类星体发出的光,这些光是在近130亿年前发出的。类星体在我们了解宇宙的历史方面起着关键作用,也可能是银河系的未来"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356819.htm手机版:https://m.cnbeta.com.tw/view/1356819.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人