AI是如何工作的?研究人员揭示成功机器学习的机制

AI是如何工作的?研究人员揭示成功机器学习的机制图像分类是一项复杂的任务,深度学习架构可以成功完成这项任务。这些深度架构通常由许多层组成,每一层由许多过滤器组成。通常的理解是,随着图像层层深入,图像的更多增强特征和特征的特征就会显现出来。然而,这些特征和特征的特征是无法量化的,因此机器学习如何工作仍然是一个谜。巴伊兰大学(Bar-IlanUniversity)的研究人员最近在《科学报告》(ScientificReports)上发表了一篇文章,揭示了成功的机器学习的内在机制,这种机制使机器学习能够出色地完成分类任务。"每个滤波器基本上都能识别一小簇图像,随着层数的增加,识别能力也会增强。巴伊兰大学物理系和Gonda(Goldschmied)多学科大脑研究中心的IdoKanter教授领导了这项研究。介绍研究的视频。资料来源:巴伊兰大学IdoKanter教授这项工作的主要贡献者之一、博士生尤瓦尔-迈尔(YuvalMeir)说:"这一发现可以为更好地理解人工智能的工作原理铺平道路。这可以在不降低整体准确性的情况下,改善延迟、内存使用和架构的复杂性。虽然人工智能一直处于近期技术进步的前沿,但了解这些机器的实际工作原理可以为更先进的人工智能开辟道路。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426822.htm手机版:https://m.cnbeta.com.tw/view/1426822.htm

相关推荐

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有23对--一半来自母亲,一半来自父亲,包括性染色体X和Y--即总共46对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量--92条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(SergiRegot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(ConnorMcKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明DNA正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种CDK在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现CDK4和CDK6的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK2也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约90%的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止APC在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431442.htm手机版:https://m.cnbeta.com.tw/view/1431442.htm

封面图片

研究人员发现"起伏"的大脑机制 挑战了多巴胺在学习中作用的传统观点

研究人员发现"起伏"的大脑机制挑战了多巴胺在学习中作用的传统观点这项研究由纽约大学格罗斯曼医学院的一个小组进行,研究了多巴胺和乙酰胆碱(另一种参与学习和记忆的大脑化学物质)之间的相互作用。以前的研究表明,这两种激素之间存在反比关系;其中一种激素的增加会导致另一种激素的减少。以前的研究认为,奖励通过同时提高多巴胺水平和降低乙酰胆碱水平来促进学习。这种突然出现的激素失衡被认为为脑细胞适应新环境和形成记忆打开了一扇机会之窗。这一过程被称为神经可塑性,是学习和伤后恢复的主要特征。然而,问题仍然在于,食物和其他外部奖励是否是这种记忆系统的唯一驱动力,或者我们的大脑是否能够在没有外界帮助的情况下创造出有利于学习的相同条件。为了澄清这个问题,研究作者重点研究了在乙酰胆碱水平较低的同时多巴胺水平较高的时间和情况。他们发现,即使在没有奖励的情况下,这种情况也会经常出现。事实上,荷尔蒙在大脑中不断起伏,多巴胺水平经常升高,而乙酰胆碱水平却很低,这为持续学习创造了条件。"我们的发现挑战了人们目前对多巴胺和乙酰胆碱何时以及如何在大脑中共同发挥作用的理解,"研究的主要作者安妮-克罗克博士说。"奖励不是为学习创造独特的条件,而是利用了一种已经存在并不断发挥作用的机制。"在最近发表在《自然》杂志上的这项研究中,研究小组让数十只小鼠使用一个轮子,它们可以在上面随意奔跑或休息。有时,研究人员会让动物喝水。然后,他们记录了啮齿动物的大脑活动,并测量了不同时刻多巴胺和乙酰胆碱的释放量。不出所料,喝水会产生典型的多巴胺和乙酰胆碱释放模式,而这正是奖励所引起的。然而,研究小组还观察到,早在接受水食之前,多巴胺和乙酰胆碱就已经遵循"起伏"循环,大约每秒两次,在此期间,一种激素水平下降,另一种激素水平上升。克罗克指出,无论啮齿动物是在奔跑还是静止不动,这种模式都在持续。她补充说,人类在内省和休息时也会出现类似的脑电波。研究的资深作者、神经科学家尼古拉斯-特里奇(NicolasTritsch)博士说:"这些结果可能有助于解释大脑是如何在不需要外部激励的情况下自行学习和演练的,也许这种脉动回路会触发大脑反思过去的事件并从中学习。尽管如此,纽约大学朗贡卫生院神经科学与生理学系助理教授特里奇还是提醒说,他们的研究并不是为了判断小鼠大脑在这种"自我驱动"的学习过程中处理信息的方式是否与人类大脑相同。他说,尽管如此,这项研究的结果也可能为理解与多巴胺水平不正确有关的神经精神疾病(如精神分裂症、注意力缺陷/多动障碍(ADHD)和抑郁症)提供新的思路。例如,精神分裂症患者经常会出现与现实相悖的妄想。特里奇说,如果多巴胺-乙酰胆碱回路不断加强大脑中的连接,那么这一机制的问题可能会导致形成过多和不正确的连接,从而使他们"了解"到并非真实发生的事件。同样,缺乏动力也是抑郁症的常见症状,这使得完成起床、刷牙或上班等基本任务变得困难。作者说,内部驱动系统的紊乱可能是导致这些问题的原因。因此,特里奇说,研究小组下一步计划研究多巴胺-乙酰胆碱循环在此类精神疾病动物模型中的表现,以及在对记忆巩固很重要的睡眠过程中的表现。...PC版:https://www.cnbeta.com.tw/articles/soft/1381973.htm手机版:https://m.cnbeta.com.tw/view/1381973.htm

封面图片

研究人员通过窥视细胞的微小运作揭示免疫系统蛋白如何相互作用

研究人员通过窥视细胞的微小运作揭示免疫系统蛋白如何相互作用研究人员通过窥视细胞的微小运作,揭示了免疫系统蛋白如何相互作用,以产生免疫反应。图片来源:JagannathMaharana/ITKanpur这项工作有可能为一系列疾病的创新治疗铺平道路,包括严重的COVID-19、类风湿性关节炎、神经退行性疾病和癌症。补体级联是我们免疫反应的核心,它是在检测到潜在威胁时激活的一系列事件。这一过程会产生蛋白信使C3a和C5a,进而激活细胞上的特定受体,引发一系列内部信号。这些受体(尤其是难以捉摸的C5aR1)的确切机制一直是个谜。研究人员利用先进的低温电子显微镜(cryo-EM)技术,捕捉到了这些受体的详细活动图像。这些图像揭示了受体如何与分子相互作用、激活时如何改变形状以及如何在细胞内传递信号。该研究的主要作者、南加州大学多恩西弗文学、艺术和科学学院生物科学、化学以及定量和计算生物学助理教授科尼利厄斯-加提在谈到研究结果时指出:"这项研究为我们提供了对免疫系统中一个重要受体家族的重要而全面的见解。"这项研究的启示为开发针对这些受体治疗各种疾病的药物提供了潜在的途径,南加州大学低温电子显微镜设施负责人加蒂补充说,该设施可供全球研究人员使用。随着全球社会继续与影响数百万人的疾病作斗争,了解免疫系统的细微差别变得越来越重要。10月17日发表在《细胞》(Cell)杂志上的这项研究有助于加深对这一问题的理解,为今后旨在利用人体天然防御功能的研究奠定了基础。...PC版:https://www.cnbeta.com.tw/articles/soft/1392867.htm手机版:https://m.cnbeta.com.tw/view/1392867.htm

封面图片

研究人员探索使用机器人和人工智能开发更好的电池

研究人员探索使用机器人和人工智能开发更好的电池大约在今年年初,卡内基-梅隆大学的研究人员使用机器人系统又进行了几十次实验,以创造能让锂离子电池更快充电的电解质。这是广泛采用电动汽车的一个主要障碍。他们研发的Clio系统,包括自动泵、阀门和仪器,将各种化学品混合在一起,然后根据关键的电池基准测量其性能。这些结果随后被输入Dragonfly,这是一个机器学习程序,可以提出可能更有效的不同化学组合。PC版:https://www.cnbeta.com/articles/soft/1321899.htm手机版:https://m.cnbeta.com/view/1321899.htm

封面图片

用于机器人学习和具身AI领域研究的模块化框架

用于机器人学习和具身AI领域研究的模块化框架RoboHive生态系统包含一系列预先存在的和新颖的环境,包括ShadowHand的灵巧操纵、Franka和Fetch机器人的全臂操纵任务以及各种四足运动任务。与之前的作品相比,RoboHive提供了精简且统一的任务界面,利用最新的模拟绑定,具有丰富的视觉多样性任务,并支持现实世界开发的通用硬件驱动程序。RoboHive的统一界面为研究人员提供了一个方便且易于访问的平台来研究多种学习范式,例如模仿、强化、多任务和分层学习。RoboHive还包括大多数环境的专家演示和基线结果,为基准测试和比较提供了标准。特征:最广泛、多样化的任务集合完全可定制的视觉丰富的任务,专为行为泛化而设计。奖励不可知的任务成功指标支持多种算法系列+预训练基线Sim和硬件无关的机器人类,可在sim<>real之间轻松转换远程操作支持。人类+专家数据集#框架

封面图片

MIT研究人员正在设计能够自我搭建的机器人

MIT研究人员正在设计能够自我搭建的机器人该系统的中心是体素(体积像素的简称,一个从计算机图形学中借来的术语),它携带的动力和数据可以在碎片之间共享。这些碎片构成了机器人的基础,移动到网格上进行进一步组装之前,可以抓取和连接其他体素。研究人员在《自然》杂志上发表的一篇相关论文中指出:"我们的方法挑战了大型建筑需要大型机器来建造的惯例,并且可以应用于今天需要大量资本投资的固定基础设施或完全不可行的领域。"图片来源/麻省理工学院为这些系统开发适当水平的人工智能是一个很大的障碍。机器人需要确定如何和在哪里建造,何时开始建造一个新的机器人,以及如何避免在这个过程中相互碰撞。论文的共同作者NeilGershenfeld在一份新闻稿中说:"当我们建造这些结构时,你必须建立起足够的人工智能,结构性电子学的见解可以使体素能够传输电力、数据以及力。"除了智能领域还需要努力外,硬件问题也仍然存在。该团队目前正在努力建立更强大的连接器,以保持体素牢固拼合在一起。麻省理工学院指出,最终这种机器人可以被用来确定最佳的建筑结构以节省大量的时间用于原型设计。虽然人们对3D打印房屋的兴趣越来越大,但如今那些需要的打印机器与正在建造的房屋一样大或更大。同样,这种结构改由成群的微小机器人组装的潜力可以带来好处。美国国防部高级研究计划局也对这项工作感兴趣,因为它有可能被用来自主建造海岸保护结构以防止侵蚀和海平面上升。美国宇航局和美国陆军研究实验室已经参与资助该项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1333571.htm手机版:https://m.cnbeta.com.tw/view/1333571.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人