甘蔗基因组的完整图谱首次完成绘制 蕴藏将甘蔗转化为绿色燃料的方法

甘蔗基因组的完整图谱首次完成绘制蕴藏将甘蔗转化为绿色燃料的方法共同作者、昆士兰农业和食品创新联盟的罗伯特-亨利教授说,甘蔗是世界上20种主要作物中最后一种绘制了基因组图谱的作物。亨利教授说:"这标志着甘蔗基因组革命的开始,现在我们拥有了与其他作物公平竞争的知识。虽然这一基因组测绘将成为帮助创造更多抗性甘蔗作物的工具,但它也是我们将甘蔗和其他植物生物质转化为航空燃料的其他研究向前迈出的重要一步"。这张图片显示的是基因排序图(使用GENESPACE创建),它比较了相关植物物种的基因组组装情况。水平白线代表染色体,连接染色体的彩色编织线表示保守的基因块。这样,研究人员就能将研究得比较透彻的作物(如双色高粱,一种特殊的高粱)中的保守基因追踪到更复杂的基因组中,如野生甘蔗和栽培品种R570,从而更好地了解它们的功能。为了形成对比,上一行提供了R570先前的单倍体组合,其中基因组中的多个染色体拷贝被表示为一个单一的马赛克组合。图片来源:AdamHealey和JohnLovell/HudsonAlpha可再生碳和甘蔗的潜力亨利教授正在开发从植物生物质中提取的可再生碳产品,以用作具有成本效益和可持续发展的航空燃料,这是澳大利亚研究理事会植物替代化石碳工程研究中心(ARCResearchHubforEngineeringPlantstoReplacementFossilCarbon)工作的一部分。他说:"传统上,甘蔗只是为了制糖而培育的,但现在随着净零排放目标的实现,人们对世界上产量最高的作物之一成为可再生碳源产生了浓厚的兴趣。这张基因组图谱将帮助我们生产出甘蔗,它是替代化石碳的更好原料"。对甘蔗研究和产业的影响首席研究员、澳大利亚联邦科学与工业研究组织(CSIRO)研究科学家凯伦-艾特肯(KarenAitken)博士说,基因组测绘方面的突破通过利用以前无法获得的甘蔗遗传多样性,解决了蔗糖产量停滞不前的严峻挑战。艾特肯博士说:"这是甘蔗研究向前迈出的重要一步,将提高我们对甘蔗产量、对不同环境条件的适应性以及抗病性等复杂性状的认识。这是首个完成的优质甘蔗品种基因组,代表了全球科学家10年合作努力的重大科学成就。这些知识为我们提供了新的工具,以加强世界各地针对这种宝贵的生物能源和粮食作物的育种计划。"澳大利亚糖业研究中心细胞遗传学家NathaliePiperidis博士说,该序列的公布将创造大量机会,澳大利亚糖业研究协会为参与这一了不起的成就感到无比自豪。"这项工作不仅有望增进我们对这种神奇作物的了解,而且还将提供前所未有的方法来推动行业内的育种技术,以生产一系列可再生和商业上可行的产品,其中包括但远不止蔗糖"。研究论文发表在《自然》杂志上。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427126.htm手机版:https://m.cnbeta.com.tw/view/1427126.htm

相关推荐

封面图片

比人类基因组更复杂 甘蔗基因组图谱的绘制标志着一个科学里程碑

比人类基因组更复杂甘蔗基因组图谱的绘制标志着一个科学里程碑现代杂交甘蔗简介现代杂交甘蔗是地球上收获最多的作物之一,用于制造糖、糖蜜、生物乙醇和生物基材料等产品。它也拥有最复杂的基因蓝图。迄今为止,甘蔗复杂的遗传学使其成为最后一种没有完整和高度精确基因组的主要作物。科学家们开发并结合多种技术,成功绘制出甘蔗的遗传密码图。有了这张地图,他们就能验证抗褐锈病的具体位置,这种褐锈病如果不加以控制,就会对糖料作物造成毁灭性打击。研究人员还可以利用基因序列更好地了解糖类生产中涉及的许多基因。甘蔗遗传研究进展这项研究是美国能源部联合基因组研究所(JGI)社区科学计划的一部分,JGI是能源部科学办公室在劳伦斯伯克利国家实验室(伯克利实验室)的用户设施。该研究于3月27日发表在《自然》杂志上,基因组可通过JGI的植物门户网站Phytozome获取。"这是我们迄今为止完成的最复杂的基因组序列,"JGI植物项目负责人、哈德逊阿尔法生物技术研究所(HudsonAlphaInstituteforBiotechnology)研究员杰里米-施穆茨(JeremySchmutz)说。"这表明我们已经取得了很大进展。这种事情在10年前人们认为是不可能的。我们现在能够实现我们认为在植物基因组学领域不可能实现的目标"。甘蔗的基因组之所以如此复杂,一方面是因为它体积庞大,另一方面是因为它比一般植物含有更多的染色体拷贝,这一特征被称为多倍体。甘蔗有大约100亿个碱基对(DNA的组成单位);相比之下,人类基因组大约有30亿个碱基对。甘蔗DNA的许多片段在不同染色体内部和之间都是相同的。因此,在重建完整基因蓝图的同时,正确重组所有小段DNA是一项挑战。研究人员将多种基因测序技术结合起来,包括一种新开发的名为PacBioHiFi的测序方法,这种方法可以准确确定较长DNA片段的序列,从而解决了这一难题。了解和利用甘蔗基因组有了完整的"参考基因组",研究甘蔗就更容易了,研究人员可以将甘蔗的基因和通路与其他研究得比较透彻的作物(如高粱或其他感兴趣的生物燃料作物,如开关草和马齿苋)的基因和通路进行比较。通过与其他作物进行比较,可以更容易地了解每个基因是如何影响相关性状的,例如哪些基因在制糖过程中高度表达,或者哪些基因对抗病性很重要。这项研究发现,负责抵抗棕色锈病的基因只存在于基因组的一个位置,而棕色锈病是一种真菌病原体,曾给甘蔗作物造成数百万美元的损失。这张图片显示的是基因排序图(使用GENESPACE创建),它比较了相关植物物种的基因组组装情况。水平白线代表染色体,连接染色体的彩色编织线表示保守的基因块。这样,研究人员就能将研究得比较透彻的作物(如双色高粱,一种特殊的高粱)中的保守基因追踪到更复杂的基因组中,如野生甘蔗和栽培品种R570,从而更好地了解它们的功能。为了形成对比,上一行提供了R570先前的单倍体组合,其中基因组中的多个染色体拷贝被表示为一个单一的马赛克组合。图片来源:AdamHealey和JohnLovell/HudsonAlpha论文第一作者、HudsonAlpha公司研究员亚当-希利(AdamHealey)说:"当我们对基因组进行测序时,我们填补了围绕褐锈病的基因序列空白。甘蔗基因组中有数十万个基因,但只有两个基因共同发挥作用,保护植物免受病原体的侵害。据我们所知,在所有植物中,以类似方式进行保护的情况屈指可数。更好地了解甘蔗的这种抗病性是如何起作用的,有助于保护其他面临类似病原体的作物。"研究人员对一种名为R570的甘蔗栽培品种进行了研究,几十年来,该品种一直被世界各地用作了解甘蔗遗传学的模型。与所有现代甘蔗栽培品种一样,R570也是由甘蔗驯化品种(产糖能力强)和野生品种(携带抗病基因)杂交而成的。对农业和生物能源的潜在影响该论文的最后一位作者、法国国际发展农业研究中心(CIRAD)甘蔗研究员安热莉克-德洪(AngéliqueD'Hont)说:"了解R570的完整遗传图谱将使研究人员能够追踪哪些基因来自哪个亲本,从而使育种人员能够更容易地确定控制相关性状的基因,以提高产量。"改良未来的甘蔗品种在农业和生物能源领域都有潜在的应用前景。改进甘蔗的产糖方式可以提高农民的作物产量,在相同的种植面积上提供更多的糖分。甘蔗是生产生物燃料(尤其是乙醇)和其他生物产品的重要原料或起始材料。甘蔗压榨后剩下的残渣被称为甘蔗渣,是一种重要的农业残渣,也可被分解和转化为生物燃料和生物产品。联合生物能源研究所是伯克利实验室领导的能源部生物能源研究中心,该研究所的首席科技官布雷克-西蒙斯(BlakeSimmons)说:"我们正在努力了解植物中的特定基因与下游生物质质量的关系,然后我们可以将生物质转化为生物燃料和生物产品。""有了对甘蔗遗传学的深入了解,我们就能更好地理解和控制植物基因型,从而生产出我们所需的糖类和蔗渣衍生中间体,实现与生物经济相关的规模化可持续甘蔗转化技术"。到目前为止,甘蔗复杂的遗传学使其成为最后一种没有完整和高精度基因组的主要作物。研究人员结合多种技术,成功绘制出甘蔗的DNA图谱,并确定了关键区域--包括与糖的生产和运输以及对褐锈病的抗病性有关的几个区域。甘蔗的参考基因组可用于帮助培育抗逆性更强的作物或提高糖产量,并可应用于农业和生物能源领域。...PC版:https://www.cnbeta.com.tw/articles/soft/1425662.htm手机版:https://m.cnbeta.com.tw/view/1425662.htm

封面图片

研究人员首次绘制狗表观基因组图谱

研究人员首次绘制狗表观基因组图谱由于狗的生物钟加快,寿命较短,与人类相比,它们可以充当瞭望者,对环境风险因素做出更快的反应,并提醒我们潜在的危险。但是,尽管我们与人类最好的朋友有着长期的关系,但我们缺乏狗的参考表观基因组。考虑到我们有如此多的共同点——环境、饮食、生活方式和接触传染源——这可能会告诉我们这些因素如何在基因上影响他们和我们,这有点令人失望。现在,首尔国立大学的研究人员填补了这一知识空白,首次创建了狗表观基因组的高质量参考图谱,为基因组学研究以及与人类和其他物种的比较研究提供了一种手段。研究人员以比格犬这一品种为对象,仔细检查了狗的11种主要组织:大脑(大脑和小脑)、乳腺、肺、肝脏、胃、脾、胰腺、肾、结肠和卵巢。然后,他们使用收集的遗传数据创建功能基因组注释,用有关结构或功能的描述信息标记DNA、RNA或蛋白质序列中的特定特征。他们将狗的表观基因组与现有的人类和小鼠表观基因组进行了比较,通过被命名为EpiCDog(狗表观基因组目录)的工作,研究人员发现了不同组织和物种之间共享的保守且动态的功能特征。最值得注意的是,狗的表观基因组被发现比小鼠的表观基因组更类似于人类的表观基因组,这表明基因的调控方式与人类健康和疾病的影响有相似之处。该研究的通讯作者Je-YoelCho表示:“这一突破性的表观基因组图谱可广泛用于研究不同的狗品种、深入研究癌症和疾病机制、进行跨物种比较研究,并对人类生命科学的进步做出重大贡献。”有趣的是,根据本月早些时候发表的一项研究,自然发生的犬类癌症与人类癌症具有显着的相似之处。研究发现,我们共有18个基因突变“热点”,这些突变很可能是癌症的原因。当前研究中研究人员的工作可以帮助发现人类和狗之间的这种重叠。研究人员表示,EpiCDog当然会让治疗我们四足朋友的兽医受益匪浅。Cho说:“这项工作也代表了兽医学领域基础研究的一个里程碑。这一突破使研究人员能够揭示表观遗传修饰对基因表达的影响,并为研究复杂疾病的潜在机制、推进狗的兽医诊断、治疗和个性化医疗方法开辟新途径。”研究人员计划开发EpiCDog以进一步推进狗的表观基因组学。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1370203.htm手机版:https://m.cnbeta.com.tw/view/1370203.htm

封面图片

我国科学家成功绘制中国豌豆基因组高质量精细物理图谱

我国科学家成功绘制中国豌豆基因组高质量精细物理图谱近日,中国农业科学院作物科学研究所特色农作物优异种质资源发掘与创新利用创新团队联合国内外多家合作单位,成功绘制了中国豌豆基因组高质量精细物理图谱,构建了栽培和野生豌豆泛基因组,解析了豌豆基因组进化特征、群体遗传结构,为揭示豌豆起源驯化,以及基因挖掘、种质创新、育种改良提供了宝贵资源及数据支撑。PC版:https://www.cnbeta.com/articles/soft/1320157.htm手机版:https://m.cnbeta.com/view/1320157.htm

封面图片

科学家利用CRISPR改变甘蔗叶片角度 使其变成超级作物

科学家利用CRISPR改变甘蔗叶片角度使其变成超级作物甘蔗是全球生物质产量最高的作物,占全球糖产量的80%和生物燃料产量的40%。其巨大的体积和对水和光的最佳利用,使其成为生产创新型可再生生物产品和生物燃料的理想来源。然而,甘蔗作为Saccharumofficinarum和Saccharumspontaneum的杂交种,其基因组是所有作物中最复杂的。这种复杂性意味着通过传统育种方法改良甘蔗具有挑战性。正因为如此,研究人员转而使用基因编辑工具,如CRISPR/Cas9系统,来精确地针对甘蔗基因组进行改良。埃莉诺-布兰特(EleanorBrant)收集叶片样本,用于基因编辑甘蔗的分子分析。图片来源:CharlesKeato佛罗里达大学先进生物能源和生物产品创新中心(CABBI)的一个研究小组在《植物生物技术期刊》上发表的新论文中,利用这种遗传复杂性的优势,使用CRISPR/Cas9系统对甘蔗的叶片角度进行了微调。这些基因调整使甘蔗能够捕捉到更多的阳光,从而增加了生物质的产量。这项工作支持能源部资助的CABBI生物能源研究中心的"植物即工厂"方法及其原料生产研究的主要目标--直接在甘蔗等植物的茎中合成生物燃料、生物产品和高价值分子。甘蔗基因组的复杂性部分归因于其高度冗余性:它的每个基因都有多个拷贝。因此,甘蔗植株表现出的表型通常取决于某个基因多个拷贝的累积表达。CRISPR/Cas9系统非常适合完成这项任务,因为它可以一次性编辑一个基因的几个或多个拷贝。BaskaranKannan在田间评估基因编辑甘蔗。图片来源:UzairKhan这项研究的重点是LIGULELESS1(即LG1),该基因在决定甘蔗叶片角度方面发挥着重要作用。叶片角度反过来又决定了植物能捕获多少光,而这对生物量的生产至关重要。由于甘蔗的高度冗余基因组包含40个LG1基因拷贝,研究人员能够通过编辑不同数量的LG1基因拷贝对叶片角度进行微调,从而根据编辑LG1基因拷贝的数量产生略微不同的叶片角度。"在一些经过LG1编辑的甘蔗中,我们只是突变了几个拷贝,"研究小组负责人、佛罗里达大学农学教授FredyAltpeter说。"通过这样做,我们能够调整叶片结构,直到找到能提高生物量产量的最佳角度"。实地试验结果及对未来的影响当研究人员在田间试验中种植甘蔗时,他们发现直立的叶片表型可以让更多的光线穿透冠层,从而提高了生物量产量。其中一个甘蔗品系的LG1拷贝数约为12%,叶片倾斜角度减少了56%,干生物量产量却增加了18%。通过优化甘蔗以捕捉更多光照,这些基因编辑可以提高生物量产量,而无需在田间添加更多肥料。除此之外,加深对复杂遗传学和基因组编辑的理解,有助于研究人员改进作物改良方法。Altpeter说:"这是第一篇描述CRISPR编辑甘蔗田间试验的同行评审出版物。这项工作也为编辑多倍体作物基因组提供了独特的机会,研究人员可以对特定性状进行微调。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435739.htm手机版:https://m.cnbeta.com.tw/view/1435739.htm

封面图片

研究人员成功测序蒙特莫朗西酸樱桃基因组

研究人员成功测序蒙特莫朗西酸樱桃基因组他们首先将开花迟缓的酸樱桃树的DNA序列与它们的亲戚桃子的基因组序列进行比较。然而,当这两个物种之间的遗传差异大大掩盖了它们的相似性时,他们感到非常吃惊。因此,研究小组接受了挑战,创建了第一个有注释的Montmorency酸樱桃基因组,并确定了编码每个基因的DNA片段。"我天真地以为这将是一项简单的工作;我们只需对一些早开和晚开的樱桃树进行测序,并将序列与桃子基因组进行比对,在短短几周内就能得到答案,"MSU农业和自然资源学院的助理教授CourtneyHollender说。"事实证明我错得不能再错了。"基因组包含一个生物体发展的所有基因和遗传指令。研究人员在种植一棵将在较晚季节开花的樱花树时,对它进行测序为他们提供了一张地图。对于Hollender的博士生CharityGoeckeritz来说,一次挫折的练习激起了她的好奇心。Goeckeritz说:"我试图将酸樱桃的DNA序列与桃子的基因组进行比对,但它们并没有很好地比对。我向所有人抱怨,最后,我的一个朋友建议我们只对酸樱桃基因组进行测序。多亏了MSU的农业生物研究项目GREEEN(即产生研究和推广以满足经济和环境需求)的资金,他们才得以做到这一点。"Hollender和Goeckeritz与MSU名誉教授、全国唯一的酸樱桃培育者AmyIezzoni,Iezzoni的博士生KathleenRhoades,园艺系和MSU植物复原力研究所的助理教授BobVanBuren,MSU基因组学核心主任KevinChilds,以及MSU园艺系副教授PatrickEdger合作。他们一起发现,Montmorency酸樱桃的基因组比他们最初想象的要复杂。这些复杂性来自于酸樱桃的亲本植物染色体。酸樱桃是异源四倍体,意味着它们不是像人类那样有两套染色体,而是有四套来自至少两个不同物种的染色体。Goeckeritz说:"酸樱桃不仅每条染色体都有四个副本,而且它还是两个不同物种之间自然杂交的产物:地樱桃,Prunusfruticosa,和甜樱桃,Prunusavium,这可能发生在近200万年前。"Goeckeritz正在利用基因组研究开花时间,而为该项目进行RNA测序或基因表达分析的Rhoades正在努力确定与特定水果性状有关的基因,如颜色和硬度。拥有Montmorency酸樱桃的基因组序列为未来大量的研究提供了可能性,通过种植更多能够抵御春季不同天气并生产更多樱桃的树木,最终将使行业和消费者受益。"在这个基因组之前,有一些关于酸樱桃的序列,但它不是一个完整的画面,我只是想拥有用于研究和育种的基因组,"霍兰德说。"现在我们有了一个完整的画面,这项研究将对全世界所有未来的酸樱桃研究和育种工作产生重大影响。"...PC版:https://www.cnbeta.com.tw/articles/soft/1361041.htm手机版:https://m.cnbeta.com.tw/view/1361041.htm

封面图片

改写历史:科学家公布首个具同形孢子蕨类植物的全长基因组

改写历史:科学家公布首个具同形孢子蕨类植物的全长基因组蕨类植物因拥有大量的染色体和大量的DNA而闻名。目前,一种不比餐盘大的蕨类植物保持着最高的染色体数量记录,它的每个细胞核中都有720对染色体。科学家们一直对蕨类植物囤积DNA的倾向感到困惑,而它们的基因组难以处理的大小也使得对它们进行测序、组装和解释成为挑战。现在,最近发表在《自然-植物》杂志上的两篇文章改写了历史,首次公布了具同形孢子蕨类植物的全长基因组,这是一个巨大的群体,包含了所有现代蕨类植物多样性的99%。PC版:https://www.cnbeta.com/articles/soft/1323653.htm手机版:https://m.cnbeta.com/view/1323653.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人