科学家发现黄铁矿中隐藏的宝藏:大量的锂

科学家发现黄铁矿中隐藏的宝藏:大量的锂航空公司不让您把笔记本电脑放在托运行李中是有原因的,因为锂离子电池会带来严重的火灾隐患。为什么呢?锂具有令人难以置信的反应性。例如,纯锂与看似无害的水发生剧烈反应,释放热量并形成极易燃的氢。然而,这种反应性正是锂成为电池材料的原因,也是锂成为绿色能源转型的关键矿物的原因。锂离子电池广泛应用于电动汽车。此外,它们还能储存太阳能和风能等可再生资源产生的能量。近年来,锂的需求急剧上升。伟晶岩和火山粘土等锂的主要来源已为人们所熟知,但寻找其他安全、经济的锂矿将会有所帮助。为此,西弗吉尼亚大学研究人员领导的一个团队正在探索,以前的工业生产(如矿山尾矿或钻屑)是否可以在不产生新废料的情况下作为额外锂的来源。西弗吉尼亚大学IsoBioGeM实验室的沉积地球化学家、博士生ShaileeBhattacharya与ShikhaSharma教授将于下周在欧洲地球科学联盟(EGU)2024年大会上介绍该团队的研究成果。巴塔查里亚说,研究小组在页岩中的黄铁矿矿物中发现了大量的锂,"这是闻所未闻的"。虽然地质文献缺乏有关锂与富含硫的黄铁矿之间交集的信息,但电化学和工程界已经开始研究锂硫电池如何取代锂离子电池。"我正试图了解锂和黄铁矿如何相互关联"。事实证明,由于锂与黄铁矿之间奇妙的相互作用,富含有机质的页岩可能具有提高锂回收率的潜力。不过,这些观察结果是否能推断出当前研究地点的样本之外的其他情况,目前还不得而知。Bhattacharya说:"这是一项针对具体情况的研究。但是,这项工作很有希望,因为它暗示了一种可能性,即某些页岩可能是一种不需要新矿的锂源。我们可以在不使用大量能源的情况下谈论可持续能源。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427678.htm手机版:https://m.cnbeta.com.tw/view/1427678.htm

相关推荐

封面图片

科学家们发现了一种稳定的高导电性锂离子导体

科学家们发现了一种稳定的高导电性锂离子导体虽然硫化物固体电解质具有导电性,但它们会与水分反应形成有毒的二硫化氢。因此,需要既导电又在空气中稳定的非硫化物固体电解质来制造安全、高性能和快速充电的固态锂离子电池。在最近发表在《材料化学》杂志上的一项研究中,由东京理科大学KenjiroFujimoto教授、AkihisaAimi教授和DENSOCORPORATION的ShuheiYoshida博士领导的研究小组发现了一种稳定且高导电性的锂离子导体烧绿石型氟氧化物的形式。藤本教授表示:“制造全固态锂离子二次电池是许多电池研究人员长期以来的梦想。我们发现了一种氧化物固体电解质,它是全固态锂离子电池的关键组成部分,它兼具高能量密度和安全性。除了在空气中稳定之外,该材料还表现出比之前报道的氧化物固体电解质更高的离子电导率。”本工作研究的烧绿石型氟氧化物可表示为Li2-xLa(1+x)/3M2O6F(M=Nb,Ta)。使用各种技术对其进行结构和成分分析,包括X射线衍射、Rietveld分析、电感耦合等离子体发射光谱法和选区电子衍射。具体来说,开发了Li1.25La0.58Nb2O6F,在室温下表现出7.0mScm⁻¹的体离子电导率和3.9mScm⁻¹的总离子电导率。人们发现它比已知的氧化物固体电解质的锂离子电导率更高。该材料的离子传导活化能极低,并且该材料在低温下的离子电导率是已知固体电解质(包括硫化物基材料)中最高的之一。确切地说,即使在–10°C的温度下,新材料在室温下也具有与传统氧化物基固体电解质相同的电导率。此外,由于在100°C以上的电导率也已得到验证,因此该固体电解质的工作范围为–10°C至100°C。传统的锂离子电池无法在低于冰点的温度下使用。因此,常用手机锂离子电池的工作条件为0℃至45℃。研究了该材料中的锂离子传导机制。烧绿石型结构的传导路径覆盖了位于MO6八面体形成的隧道中的F离子。传导机制是锂离子的顺序运动,同时改变与氟离子的键。Li离子总是穿过亚稳态位置移动到最近的Li位置。与F离子结合的固定La3+通过阻断传导路径并消除周围的亚稳态位置来抑制锂离子传导。与现有的锂离子二次电池不同,氧化物基全固态电池不存在因损坏而导致电解液泄漏的风险,也不像硫化物基电池那样产生有毒气体的风险。因此,这项新的创新预计将引领未来的研究。“新发现的材料是安全的,并且比之前报道的基于氧化物的固体电解质具有更高的离子电导率。这种材料的应用有望开发出革命性的电池,这种电池可以在从低到高的宽温度范围内工作,”藤本教授展望道。“我们相信固体电解质应用于电动汽车所需的性能是满足的。”值得注意的是,新材料非常稳定,如果损坏也不会点燃。它适用于飞机和其他对安全至关重要的地方。它还适合高容量应用,例如电动汽车,因为它可以在高温下使用并支持快速充电。此外,它还是一种有前途的用于电池、家用电器和医疗设备小型化的材料。总之,研究人员不仅发现了一种具有高导电性和空气稳定性的锂离子导体,而且还引入了一种新型的超离子导体--焦绿宝石型氧氟化物。探索锂周围的局部结构、它们在传导过程中的动态变化,以及它们作为全固态电池固态电解质的潜力,是未来研究的重要领域。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432002.htm手机版:https://m.cnbeta.com.tw/view/1432002.htm

封面图片

科学家展示锂金属电池设计:在空心多孔碳结构中储存离子以实现快速充电

科学家展示锂金属电池设计:在空心多孔碳结构中储存离子以实现快速充电据NewAtlas报道,韩国国家科技研究委员会的科学家们展示了一种很有前景的新电池结构,这种结构可以大大改善容量和充电时间。这一突破源于高密度锂金属电池的新设计,该设计仔细控制有问题的离子生长,使其能够在数百次循环中保持功能。目前使用的锂电池有一个由石墨制成的阳极组件,但如果科学家们能够使用纯金属锂来代替,这将标志着能源储存技术的巨大飞跃。这是因为锂金属的理论容量约为石墨的10倍,约为3860mAh/g,而石墨为372mAh/g,这将使电动汽车在每次充电后行驶得更远,或者使智能手机能够运行一周时间。但是,这些电池通过不同的化学反应产生能量,而这些反应带来了另一组需要解决的问题。随着锂金属电池的循环,锂离子在阳极表面不均匀地生长,形成被称为枝晶的结构。这些突起会导致阳极膨胀,电池短路或起火。大量的研究都集中在解决这个问题上。这项新研究的作者用一种具有空心的多孔碳结构来解决这个问题,作为阳极。这些被称为Li-confinablecore–shellhosts的结构被认为是这一领域令人振奋的前景,它们能够在循环过程中通过将锂存放在空心中来防止枝晶生长和体积膨胀。然而,它们确实在另一个方面存在着不良的电化学性能,在操作过程中仍然在结构的表面形成不良的锂生长,这就是所谓的顶部电镀。该团队已经为这些结构开发了一种新的设计,在中空核心中加入了少量的金纳米粒子。这些颗粒对锂离子有亲和力,因此能够控制它们的生长方向,将它们诱入核心,同时还在外壳中形成纳米级的孔隙,进一步促进锂离子向空心中心迁移。这有助于防止枝晶生长和顶部电镀,由此产生的电池设计在该团队的模拟实验中显示出巨大的潜力。在高电流充电条件下,锂离子沉积被保持在结构内,并使其在高电流密度下的500次充电循环中保持82.5%的容量。研究小组认为,这种寿命和对高电流密度的耐受性指向了一种高容量的电池,它还可以快速充电。领导该研究小组的ByungGonKim博士说:“尽管有高容量的优点,锂金属电池在商业化方面还有许多障碍需要克服,主要是由于稳定性和安全性问题。我们的研究是非常有价值的,因为我们开发了一种大规模生产具有高库仑效率的锂金属储能器的技术,用于快速充电的锂金属电池。”该团队正在努力使该电池技术商业化,但首先需要开发一种兼容的电解质溶液,以便在使用过程中传输离子。该研究发表在《ACSNano》杂志上。PC版:https://www.cnbeta.com/articles/soft/1309939.htm手机版:https://m.cnbeta.com/view/1309939.htm

封面图片

科学家开发出具有8000次充电循环的低成本新型电池

科学家开发出具有8000次充电循环的低成本新型电池访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器新型锌-木质素电池非常稳定,可以使用8000次以上,同时保持约80%的性能。研究人员开发的电池虽小,但技术是可扩展的。资料来源:ThorBalkhed"太阳能电池板已经变得相对便宜,低收入国家的许多人都采用了太阳能电池板。然而,在赤道附近,太阳会在下午6点左右落下,导致家庭和企业停电。"林雪平大学有机电子学教授ReverantCrispin说:"我们希望这种电池技术,即使性能低于昂贵的锂离子电池,最终也能为这些情况提供解决方案。"他所在的有机电子实验室研究小组与卡尔斯塔德大学和查尔姆斯大学的研究人员合作,开发出了一种基于锌和木质素的电池,这两种材料既经济又环保。就能量密度而言,这种电池与铅酸电池相当,但没有有毒的铅。研究人员ReverantCrispin和ZiyauddinKhan在有机电子实验室。图片来源:ThorBalkhed这种电池非常稳定,可使用8000次以上,同时保持约80%的性能。此外,该电池的电量可保持约一周时间,比其他只需几个小时就能放电的同类锌电池要长得多。虽然锌基电池已经进入市场,但主要是作为不可充电电池,预计在适当引入可充电功能后,锌基电池将成为锂离子电池的补充,并在某些情况下长期取代锂离子电池。"虽然锂离子电池在处理得当的情况下非常有用,但它们可能具有爆炸性,难以回收利用,而且在提取钴等特定元素时会产生环境和人权问题。因此,在能量密度并不重要的情况下,我们的可持续电池提供了一种很有前景的替代品。"锌电池的主要问题是耐用性差,因为锌会与电池电解质溶液中的水发生反应。这种反应会产生氢气和锌的树枝状生长,使电池基本上无法使用。为了稳定锌,使用了一种名为聚丙烯酸酯钾基聚合物水包盐电解质(WiPSE)的物质。林雪平的研究人员现在已经证明,在含有锌和木质素的电池中使用WiPSE时,稳定性非常高。"锌和木质素都非常便宜,而且这种电池很容易回收。如果计算每个使用周期的成本,与锂离子电池相比,它是一种非常便宜的电池,"ZiyauddinKhan说。目前,实验室开发的电池体积较小。不过,研究人员相信,由于木质素和锌的丰富,他们可以低成本制造出大型电池,大小与汽车电瓶差不多,不过,大规模生产还是需要商业公司的参与。ReverantCrispin断言,瑞典作为一个创新型国家,能够帮助其他国家采用更具可持续性的替代方案。"我们有责任帮助低收入国家避免重蹈我们的覆辙。他们在建设基础设施时,需要立即从绿色技术入手。如果引入不可持续的技术,那么数十亿人将会使用这种技术,从而导致气候灾难,"ReverantCrispin说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431163.htm手机版:https://m.cnbeta.com.tw/view/1431163.htm

封面图片

科学家们开发出了一种用于锂离子电池的超低浓度电解质

科学家们开发出了一种用于锂离子电池的超低浓度电解质锂离子电池(LIB)为智能手机和平板电脑提供电力,驱动电动汽车,并在发电厂储存电力。大多数锂离子电池的主要成分是锂钴氧化物(LCO)阴极、石墨阳极以及为阴极和阳极的解耦反应提供移动离子的液态电解质。这些电解质决定了电极上形成的相间层的性质,从而影响电池循环性能等特性。然而,商用电解质大多仍基于30多年前配制的系统:1.0至1.2摩尔/升六氟磷酸锂(LiPF6)在羧酸酯("碳酸溶剂")中的溶液。在过去的十年中,高浓度电解质(>3mol/L)得到了发展,它们有利于形成坚固的无机主导相间层,从而提高了电池性能。然而,这些电解质粘度高、润湿能力差、导电性差。由于需要大量的锂盐,这些电解质的价格也非常昂贵,而这往往是影响可行性的一个关键参数。为了降低成本,超低浓度电解质(<0.3mol/L)的研究也已开始。这些电解质的缺点是,电池电池分解的溶剂多于少量的盐阴离子,从而导致有机物占主导地位,相间层的稳定性较差。由宁波大学(中国)和波多黎各大学里奥皮德拉斯校区(美国)的袁金良、夏岚和吴先勇领导的研究小组现已开发出一种超低浓度电解质,可能适用于锂离子电池的实际应用:LiDFOB/EC-DMC。LiDFOB(二氟草酸硼酸锂)是一种常见的添加剂,价格比LiPF6便宜得多。EC-DMC(碳酸乙酯/碳酸二甲酯)是一种商用碳酸酯溶剂。这种电解液的含盐量低至2重量百分比(0.16摩尔/升),但离子电导率却高达4.6mS/cm,足以使电池正常工作。此外,DFOB-阴离子的特性还能在LCO和石墨电极上形成以无机物为主的坚固相间层,从而在半电池和全电池中实现出色的循环稳定性。目前使用的LiPF6会在潮湿环境中分解,释放出剧毒和腐蚀性的氟化氢气体(HF),而LiDFOB则对水和空气稳定。使用LiDFOB的LIB不需要严格的干燥室条件,而可以在环境条件下制造,这又是一个节约成本的特点。此外,回收问题也会大大减少,从而提高可持续性。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428465.htm手机版:https://m.cnbeta.com.tw/view/1428465.htm

封面图片

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖2023年7月4日–欧洲专利局(EPO)今天宣布中国科学家吴凯及其团队荣获2023年欧洲发明家奖“非EPO国家”类别的获奖者。吴凯和他的团队从600多名候选人中脱颖而出团队开发了一种带有顶盖的锂离子电池,可作为降低电池安全风险的屏障。本发明有助于确保配备含有易燃电解质的锂离子(Li-ion)电池的车辆的安全。——

封面图片

科学家发现水基电池的储存能力有着高达1000%的差异

科学家发现水基电池的储存能力有着高达1000%的差异化学工程教授JodieLutkenhaus博士和化学助理教授DanielTabor博士在《自然材料》上发表了他们关于无锂电池的研究结果。"不会再有电池火灾了,因为它是水基的,"Lutkenhaus说。"在未来,如果预测到材料短缺,锂离子电池的价格会大涨。如果我们有了这种替代电池,我们就可以转向这种化学,其供应要稳定得多,因为我们可以在美国这里制造它们,而且制造它们的材料也在这里。"Lutkenhaus说,水电池由阴极、电解质和阳极组成。阴极和阳极是可以储存能量的聚合物,而电解质是与有机盐混合的水。电解液通过其与电极的相互作用,是离子传导和能量存储的关键。她说:"如果一个电极在循环过程中膨胀得太厉害,那么它就不能很好地传导电子,就会失去所有的性能。我相信,由于肿胀效应,储能能力有1000%的差异,这取决于电解质的选择。"根据他们的文章,氧化还原活性的非共轭自由基聚合物(电极)是有希望成为无金属水电池的候选者,因为这种聚合物具有高放电电压和快速氧化还原动力学。由于电子、离子和水分子的同时转移,该反应很复杂且难以解决。研究人员在文章中说:"我们通过使用电化学石英晶体微天平在一系列时间尺度上进行耗散监测,检查不同混沌/交变特性的水电解质,证明了氧化还原反应的性质。"Tabor的研究小组用计算模拟和分析对实验工作进行了补充。仿真让人们深入了解了结构和动力学的微观分子尺度的情况。"理论和实验经常紧密合作以了解这些材料。在这篇论文中,我们在计算上所做的新事情之一是,我们实际上将电极充电到多种电荷状态,并观察周围环境如何对这种充电做出反应。"研究人员通过准确测量电池运行时有多少水和盐进入电池,从宏观上观察电池阴极是否在某些种类的盐存在时工作得更好。"我们这样做是为了解释在实验中观察到的情况,现在,我们希望将我们的模拟扩展到未来的系统。我们需要让我们的理论得到证实,什么是驱动这种水和溶剂注入的力量。""有了这种新的储能技术,这是对无锂电池的一种推动。"Tabor说:"我们对是什么让一些电池电极比其他电池电极工作得更好有了更好的分子水平的描述,这为我们在材料设计方面的进展提供了强有力的证据。"...PC版:https://www.cnbeta.com.tw/articles/soft/1355015.htm手机版:https://m.cnbeta.com.tw/view/1355015.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人