人类为何频繁眨眼?新研究挑战传统观点

人类为何频繁眨眼?新研究挑战传统观点研究人员发现,眨眼对于处理视觉信息至关重要,这对视觉的传统观点提出了挑战,并有助于更广泛地修正该领域的认识。眨眼这个简单的动作,竟然占据了我们大部分的清醒时间。平均而言,人类在醒着的时候,大约有3%到8%的时间会因为眨眼而闭上双眼。鉴于眨眼会阻止外部景物的图像在视网膜上形成,我们花如此多的时间处于这种看似脆弱的状态,真是一种奇特的进化怪圈--尤其是考虑到眨眼的频率比必要的频率还要高,只是为了保持眼睛的润滑。那么,为什么眨眼很重要呢?罗切斯特大学的研究人员对眨眼这一奇特现象进行了调查,发现眨眼不仅仅是保持眼睛湿润的一种机制,眨眼在让我们的大脑处理视觉信息方面也发挥着重要作用。研究人员在《美国国家科学院院刊》上发表了他们的研究成果。脑与认知科学系教授米歇尔-鲁奇(MicheleRucci)说:"通过调节视网膜的视觉输入,眨眼能有效地重新格式化视觉信息,产生的亮度信号与我们通常观察场景中某一点时所体验到的信号截然不同。"鲁奇和他的同事追踪了人类观察者的眼球运动,并将这些数据与计算机模型和频谱分析(分析视觉刺激中的各种频率)相结合,研究了眨眼与眼皮闭合时相比,对眼睛所看到的东西有何影响。研究人员测量了人类对不同类型刺激(如不同细节层次的图案)的感知灵敏度。他们发现,当人们眨眼时,他们会更善于注意到逐渐变化的大图案。也就是说,眨眼能为大脑提供有关视觉场景整体大画面的信息。研究结果表明,当我们眨眼时,眼睑的快速运动会改变有效刺激视网膜的光线模式。与睁开眼睛专注于某一点时相比,这为我们的大脑创造了一种不同的视觉信号。本文第一作者、鲁奇实验室的研究生杨斌说:"我们的研究表明,人类观察者从眨眼瞬态中获益,正如这些瞬态所传递的信息所预测的那样。因此,与通常的假设相反,眨眼会改善--而不是破坏--视觉处理,充分补偿刺激暴露的损失。"这些发现进一步加强了鲁奇实验室在视觉感知方面不断增长的研究成果,强调了人类的视觉是感觉输入和运动活动的结合。例如,当我们嗅觉或触觉时,我们的肢体动作会帮助大脑理解空间。研究人员以前认为视觉是不同的,但鲁奇的研究支持了视觉更像其他感官的观点。鲁奇说:"由于空间信息在视网膜上的图像中是明确的,因此人们认为视觉感知是不同的。我们的研究结果表明,这种观点并不全面,视觉与其他感官模式的相似性比人们通常认为的要高。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427724.htm手机版:https://m.cnbeta.com.tw/view/1427724.htm

相关推荐

封面图片

新研究挑战了关于大型岩浆喷发起源的传统观点

新研究挑战了关于大型岩浆喷发起源的传统观点玄武岩是一种火山岩,它是由含有大量黑质矿物(如辉石和橄榄石)的熔岩冷却和凝固后形成的。当这种熔岩从火山中喷发出来并与地球表面接触时,就会发生玄武岩熔岩喷发。这些喷发可以是爆炸性的,也可以是更多的喷发,在很长一段时间内缓慢而稳定地在地表流动。玄武岩熔岩通常比其他类型的熔岩更具流动性,这使得它可以轻松流动并覆盖大片区域。赫尔辛基大学的JussiHeinonen博士是最近描述这项研究的《岩石学杂志》文章的主要作者,他解释说:"洪积玄武岩喷发一般需要在低压条件下熔化地幔的想法主要是基于喷发的岩浆的微量元素组成。"他进一步指出,许多洪积玄武岩中稀土元素的相对数量表明岩浆在低压地幔矿物的存在下形成。南极洲DronningMaudLand的洪积玄武岩源于一个特别深的地幔源。资料来源:ArtoLuttinen这项新的研究是作为一个研究项目的一部分进行的,该项目重点关注当南部非洲和南极洲在大约1.8亿年前作为盘古大陆的一部分相互连接时,在这些大陆上爆发的洪水玄武岩的起源。赫尔辛基大学研究小组组长ArtoLuttinen博士介绍说:"我们对非洲和南极洲构造板块厚而非薄的地区出现的大多数洪积玄武岩感到好奇,此外,我们发现许多具有稀土元素成分的洪积玄武岩,暗示着高压形成条件,实际上位于构造板块的薄区域。"在研究小组在莫桑比克发现一种洪泛玄武岩后,另一种假说的想法开始形成,这种玄武岩在成分上显示出异常高的喷发温度。赫尔辛基大学的博士生SanniTurunen补充说:"这些洪积玄武岩使我们考虑到这样一种可能性,即特别热的地幔的熔化可能导致高压岩浆的形成,其微量元素特征与低压岩浆相似。"研究人员决定使用地球化学建模工具REEBOXPRO来测试他们的假设,该工具能够真实地模拟地幔熔化过程中的矿物、熔体及其微量元素含量的行为。文章的共同作者、REEBOXPRO工具的开发者之一、奥胡斯大学的EricBrown博士说:"我们很高兴地发现,模拟结果支持了我们的假设,预测了石榴石的总消耗量,石榴石是高压条件下的诊断矿物,当地幔熔化发生在洪荒玄武岩所显示的高温下时。"因此,当地幔来源非常热时,在高压下形成的岩浆在化学上可能类似于低压岩浆。此外,结果表明,当选择不同种类的地幔源进行建模时,石榴石在相对较低的压力下生存。"我们的结果有助于我们理解南部非洲和南极洪积玄武岩的出现和它们的微量元素特征之间的明显争议。最重要的是,我们表明大量的洪积玄武岩可以在厚构造板块区域形成,而且除非考虑到地幔温度和成分的影响,否则洪积玄武岩的微量元素成分是岩浆生成深度的不可靠的指标。"作者总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1338515.htm手机版:https://m.cnbeta.com.tw/view/1338515.htm

封面图片

细胞图谱捕捉到了人类视网膜的多彩细节

细胞图谱捕捉到了人类视网膜的多彩细节为了将细节扩大10倍,新研究的研究人员利用了一种叫做迭代间接免疫荧光成像(4i)的新技术。其基本原理听起来很简单--在拍下图像并使用三种染料进行测量后,把样品中的染料洗掉,然后用另外三种染料进行染色。一次又一次地重复这个过程,然后用计算机将所有的图像合并成一个,然后就可以了--最终的结果是一张标有几十种蛋白质的显微镜图像。在这种情况下,苏黎世联邦理工学院的研究人员使用4i技术创建了人类视网膜的新细胞图谱。在18天里,一个机器人拍下了18个不同批次的染色蛋白质的图像,最终创造了一个包含53种不同类型蛋白质的彩色显微镜图像。完整的4i视网膜图像,显示了组织的错综复杂的细节Wahle等人,《自然-生物技术》2023期他们没有从人身上提取视网膜,而是在实验室里用干细胞培育出迷你的3D版本,其发育方式与真实的视网膜非常相似。利用这些视网膜器官,该团队展示了这种成像方式可用于研究人类发育,研究人员对一系列不同年龄的视网膜器官进行了处理,一直到它们39周的发育期。"我们可以用这个时间序列来显示类器官组织是如何慢慢建立起来的,哪些细胞类型在哪里增殖,什么时候增殖,以及突触的位置,"该研究的高级作者GrayCamp说。"这些过程与胚胎发育过程中的视网膜形成过程相类似。"下一步,研究人员计划将这种技术用于视网膜器官,如视网膜色素变性(一种可导致失明的退行性疾病),以研究该疾病的进展并寻找如何治疗的新见解。最终,他们希望将该技术应用于其他类型的组织,以研究发育和疾病。该研究发表在《自然-生物技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1358799.htm手机版:https://m.cnbeta.com.tw/view/1358799.htm

封面图片

研究人员发现"起伏"的大脑机制 挑战了多巴胺在学习中作用的传统观点

研究人员发现"起伏"的大脑机制挑战了多巴胺在学习中作用的传统观点这项研究由纽约大学格罗斯曼医学院的一个小组进行,研究了多巴胺和乙酰胆碱(另一种参与学习和记忆的大脑化学物质)之间的相互作用。以前的研究表明,这两种激素之间存在反比关系;其中一种激素的增加会导致另一种激素的减少。以前的研究认为,奖励通过同时提高多巴胺水平和降低乙酰胆碱水平来促进学习。这种突然出现的激素失衡被认为为脑细胞适应新环境和形成记忆打开了一扇机会之窗。这一过程被称为神经可塑性,是学习和伤后恢复的主要特征。然而,问题仍然在于,食物和其他外部奖励是否是这种记忆系统的唯一驱动力,或者我们的大脑是否能够在没有外界帮助的情况下创造出有利于学习的相同条件。为了澄清这个问题,研究作者重点研究了在乙酰胆碱水平较低的同时多巴胺水平较高的时间和情况。他们发现,即使在没有奖励的情况下,这种情况也会经常出现。事实上,荷尔蒙在大脑中不断起伏,多巴胺水平经常升高,而乙酰胆碱水平却很低,这为持续学习创造了条件。"我们的发现挑战了人们目前对多巴胺和乙酰胆碱何时以及如何在大脑中共同发挥作用的理解,"研究的主要作者安妮-克罗克博士说。"奖励不是为学习创造独特的条件,而是利用了一种已经存在并不断发挥作用的机制。"在最近发表在《自然》杂志上的这项研究中,研究小组让数十只小鼠使用一个轮子,它们可以在上面随意奔跑或休息。有时,研究人员会让动物喝水。然后,他们记录了啮齿动物的大脑活动,并测量了不同时刻多巴胺和乙酰胆碱的释放量。不出所料,喝水会产生典型的多巴胺和乙酰胆碱释放模式,而这正是奖励所引起的。然而,研究小组还观察到,早在接受水食之前,多巴胺和乙酰胆碱就已经遵循"起伏"循环,大约每秒两次,在此期间,一种激素水平下降,另一种激素水平上升。克罗克指出,无论啮齿动物是在奔跑还是静止不动,这种模式都在持续。她补充说,人类在内省和休息时也会出现类似的脑电波。研究的资深作者、神经科学家尼古拉斯-特里奇(NicolasTritsch)博士说:"这些结果可能有助于解释大脑是如何在不需要外部激励的情况下自行学习和演练的,也许这种脉动回路会触发大脑反思过去的事件并从中学习。尽管如此,纽约大学朗贡卫生院神经科学与生理学系助理教授特里奇还是提醒说,他们的研究并不是为了判断小鼠大脑在这种"自我驱动"的学习过程中处理信息的方式是否与人类大脑相同。他说,尽管如此,这项研究的结果也可能为理解与多巴胺水平不正确有关的神经精神疾病(如精神分裂症、注意力缺陷/多动障碍(ADHD)和抑郁症)提供新的思路。例如,精神分裂症患者经常会出现与现实相悖的妄想。特里奇说,如果多巴胺-乙酰胆碱回路不断加强大脑中的连接,那么这一机制的问题可能会导致形成过多和不正确的连接,从而使他们"了解"到并非真实发生的事件。同样,缺乏动力也是抑郁症的常见症状,这使得完成起床、刷牙或上班等基本任务变得困难。作者说,内部驱动系统的紊乱可能是导致这些问题的原因。因此,特里奇说,研究小组下一步计划研究多巴胺-乙酰胆碱循环在此类精神疾病动物模型中的表现,以及在对记忆巩固很重要的睡眠过程中的表现。...PC版:https://www.cnbeta.com.tw/articles/soft/1381973.htm手机版:https://m.cnbeta.com.tw/view/1381973.htm

封面图片

稀有视网膜细胞可能是眼睛感知真实色彩的关键

稀有视网膜细胞可能是眼睛感知真实色彩的关键罗切斯特大学的研究人员利用自适应光学技术深入了解了视网膜的复杂工作原理及其在处理颜色方面的作用。他们在眼窝中发现了难以捉摸的视网膜神经节细胞(RCG),这些细胞可以解释人类是如何看到红、绿、蓝和黄色的。视网膜上有三种类型的锥状体来检测颜色,它们对短、中或长波长的光都很敏感。视网膜神经节细胞将这些锥状体的输入信息传递给中枢神经系统。20世纪80年代,威廉-G-艾林医学光学教授戴维-威廉姆斯(DavidWilliams)帮助绘制了解释色彩检测的"基本方向"图。然而,眼睛检测颜色的方式与人类看到颜色的方式存在差异。科学家们怀疑,虽然大多数RGC遵循基本方向,但它们可能与少量非基本方向的RGC协同工作,从而产生更复杂的感知。最近,来自罗切斯特视觉科学中心、光学研究所和弗劳姆眼科研究所的一组研究人员在眼窝中发现了一些难以捉摸的视网膜神经节细胞,它们可以解释人类是如何看到红、绿、蓝和黄色的。视觉科学中心的博士后研究员萨拉-帕特森(SaraPatterson)领导了这项研究。"关于它们的反应特性是如何运作的,我们还有很多东西需要了解,但它们是视网膜处理颜色过程中缺失环节的一个令人信服的选择。"该团队利用自适应光学技术,这种技术使用可变形的镜面来克服光线失真,最早由天文学家开发,用于减少地面望远镜的图像模糊。20世纪90年代,威廉姆斯和他的同事们开始将自适应光学技术应用于人眼研究。他们制造了一种照相机,可以补偿眼睛自然像差造成的畸变,产生单个感光细胞的清晰图像。帕特森说:"眼睛晶状体的光学结构并不完美,这确实降低了眼底镜的分辨率。自适应光学技术能检测并校正这些像差,让我们能够清晰地观察眼睛。这让我们能够前所未有地接触到视网膜神经节细胞,它们是大脑视觉信息的唯一来源。"增进我们对视网膜复杂过程的了解,最终有助于找到更好的方法,让失去视力的人恢复视力。帕特森说:"人类有20多个神经节细胞,而我们的人类视觉模型只基于三个神经节细胞。视网膜上有很多我们不知道的东西。这是工程学完全超越视觉基础科学的罕见领域之一。现在人们的眼睛里装着视网膜假体,但如果我们知道所有这些细胞的作用,我们就能让视网膜假体根据神经节细胞的实际功能作用来驱动它们。"...PC版:https://www.cnbeta.com.tw/articles/soft/1430067.htm手机版:https://m.cnbeta.com.tw/view/1430067.htm

封面图片

新的Omega-3补充剂可以防止阿尔茨海默氏症、糖尿病等引起的视力丧失

新的Omega-3补充剂可以防止阿尔茨海默氏症、糖尿病等引起的视力丧失在鱼油胶囊和其他补充剂中发现的DHA通常是以一种叫做三酰甘油(TAG)DHA的形式存在。尽管TAG-DHA在身体的其他部位有好处,但它并没有到达眼睛,因为它不能从血液中进入视网膜。在这项研究中,研究人员创造了一种新的溶血磷脂形式的DHA,或LPC-DHA。在使用小鼠的研究中,LPC-DHA成功地增加了视网膜中的DHA,并减少了与阿尔茨海默病类似过程有关的眼睛问题。"伊利诺伊大学芝加哥分校医学系研究助理教授SugasiniDhavamani说:"饮食中的LPC-DHA在富集视网膜DHA方面大大优于TAG-DHA,可能对患者的各种视网膜病变有益。"这种方法为预防或减轻与阿尔茨海默病和糖尿病有关的视网膜功能障碍提供了一种新的治疗方法"。SugasiniDhavamani,博士,伊利诺伊大学芝加哥分校医学系的研究助理教授。Credit:SugasiniDhavamani,UniversityofIllinoisatChicago(伊利诺伊大学芝加哥分校)Dhavamani将在3月25-28日在西雅图举行的美国生物化学和分子生物学会的年度会议DiscoverBMB上介绍了这项研究。在健康的眼睛里,DHA集中在视网膜上,它在那里帮助维持光感受器,这些细胞将光转化为信号并传送给大脑。视网膜中DHA的缺乏与视力丧失有关。阿尔茨海默病患者,以及那些患有糖尿病、视网膜色素变性、老年性黄斑变性和过氧化物酶体疾病的人,经常有异常低的视网膜DHA水平,因此,视觉障碍很常见。虽然提高DHA有助于防止这种对健康不利的水平下降,但增加视网膜DHA含量在目前可用的补充剂中一直是个挑战。膳食补充剂要向视网膜输送DHA,DHA必须能够首先从肠道吸收到血液中,然后从血液中进入视网膜。Dhavamani说:"由于血液-视网膜屏障的特异性与肠道屏障的特异性不相容,到目前为止,以临床上可行的剂量增加视网膜DHA还不可能。而新的研究采用了饮食LPC-DHA的新方法,它克服了肠道和血液-视网膜屏障,改善了视网膜功能"。研究人员在小鼠身上测试了他们的LPC-DHA补充剂,这些小鼠表现出与早发性阿尔茨海默病中发现的过程相似。六个月后,每天喂食LPC-DHA的小鼠显示视网膜DHA含量提高了96%,并保留了视网膜结构和功能。相比之下,TAG-DHA补充剂对视网膜DHA水平或功能没有影响。结果表明,LPC-DHA补充剂可以帮助防止与阿尔茨海默氏症相关的视觉功能衰退。研究人员说,这种方法对其他DHA缺乏和视力损伤常见的疾病也应该有帮助。研究中使用的LPC-DHA的剂量相当于人类每天摄入约250至500毫克的欧米茄-3脂肪酸。由于这些研究是在小鼠身上进行的,因此需要进一步研究,以确认LPC-DHA用于人类是安全和有效的。...PC版:https://www.cnbeta.com.tw/articles/soft/1351445.htm手机版:https://m.cnbeta.com.tw/view/1351445.htm

封面图片

对眼科疾病的新认识:3D图谱揭示了人类视网膜细胞内的DNA组织

对眼科疾病的新认识:3D图谱揭示了人类视网膜细胞内的DNA组织美国国家眼科研究所(NEI)的科学家绘制了人类视网膜细胞染色质的组织图。这些纤维将30亿个核苷酸长的DNA分子包装成紧凑的结构,形成每个细胞核内的染色体。由此产生的综合基因调控网络提供了对一般基因表达调控的见解,以及对罕见和常见眼科疾病中视网膜功能的见解。该研究将于今天(2022年10月7日)发表在《自然通讯》杂志上。PC版:https://www.cnbeta.com/articles/soft/1324601.htm手机版:https://m.cnbeta.com/view/1324601.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人