创新型盐电池可高效获取渗透动力

创新型盐电池可高效获取渗透动力改进后的膜(黄线)极大地提高了从盐梯度(如咸水(左槽)与淡水(右槽)交汇的河口)获得的渗透力。来源:改编自《ACSEnergyLetters2024》,DOI:10.1021/acsenergylett.4c00320在实验室演示中,新设计的输出功率密度比商用膜高出两倍多。只要有盐梯度的地方就能产生渗透能,但现有的捕捉这种可再生能源的技术还有待改进。其中一种方法是利用反向电渗析(RED)膜阵列作为一种"盐电池",利用盐梯度造成的压力差发电。为了平衡这种梯度,带正电荷的海水离子(如钠)会通过系统流向淡水,从而增加膜上的压力。为了进一步提高收集能力,膜还需要保持较低的内部电阻,让电子能够轻松地向离子的相反方向流动。以前的研究表明,改善离子在RED膜上的流动和电子传输的效率可能会增加从渗透能中捕获的电量。因此,叶冬冬、秦兴珍及其同事设计了一种由环保材料制成的半透膜,理论上可以使内阻最小化,输出功率最大化。研究人员的RED膜原型包含独立(即解耦)的离子传输和电子传输通道。他们将带负电荷的纤维素水凝胶(用于离子传输)夹在一层名为聚苯胺的有机导电聚合物(用于电子传输)之间,从而实现了这一功能。初步测试证实了他们的理论,即与相同材料制成的同质膜相比,解耦传输通道可产生更高的离子传导性和更低的电阻率。在模拟河口环境的水箱中,他们的原型机的输出功率密度是商用RED膜的2.34倍,并在16天的不间断运行中保持了性能,证明了其在水下的长期稳定性能。在最后的测试中,研究小组用20块RED膜制作了一个盐电池阵列,产生的电能足以为计算器、LED灯和秒表单独供电。叶、秦和他们的团队成员说,他们的发现扩大了可用于制造RED膜的生态材料的范围,提高了渗透能量收集性能,使这些系统在现实世界中的应用更加可行。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428503.htm手机版:https://m.cnbeta.com.tw/view/1428503.htm

相关推荐

封面图片

科学家开发出新型"液滴"电池 为集成到人体组织中的微型设备做好准备

科学家开发出新型"液滴"电池为集成到人体组织中的微型设备做好准备为了解决这个问题,牛津大学化学系的研究人员开发出了一种微型电源,能够改变培养的人类神经细胞的活性。受电鳗发电方式的启发,该装置利用内部离子梯度产生能量。这种微型软电源是通过沉积由五个纳升大小的导电水凝胶液滴(一种含有大量吸收水的聚合物链的三维网络)组成的链而产生的。每个液滴都有不同的成分,从而在整个链上形成盐浓度梯度。液滴与相邻液滴之间由脂质双分子层隔开,脂质双分子层提供机械支撑,同时防止离子在液滴之间流动。通过将结构冷却到4°C并改变周围介质来开启电源:这会破坏脂质双分子层,使液滴形成连续的水凝胶。这样,离子就能通过导电水凝胶,从两端的高盐液滴移动到中间的低盐液滴。将末端液滴连接到电极上,离子梯度释放的能量就会转化为电能,从而使水凝胶结构成为外部元件的电源。在研究中,活化液滴电源产生的电流可持续30分钟以上。由50纳升液滴组成的装置的最大输出功率约为65纳瓦(nW)。这些装置在储存36小时后仍能产生类似的电流。左图:液滴动力源的放大版,用于可视化。500nL体积的液滴被封装在柔性可压缩有机凝胶中。比例尺:10毫米。右图:由50nL液滴组成的标准尺寸液滴动力源放大图。比例尺:500μm500微米。图片来源:YujiaZhang水凝胶液滴动力装置的激活过程。左图:电池激活前,绝缘脂阻止液滴之间的离子流动。右图:电源通过热凝胶化过程激活,使脂质双分子层破裂。离子随后通过导电水凝胶,从两端的高盐液滴移动到中间的低盐液滴。银/氯化银电极用于测量电输出。图片来源:YujiaZhang。研究小组随后演示了如何将活细胞附着在装置的一端,使其活动直接受离子电流调节。研究小组将该装置连接到含有人类神经祖细胞的液滴上,这些细胞已用荧光染料染色,以显示它们的活性。接通电源后,延时记录显示,在局部离子电流的诱导下,神经元中出现了细胞间钙信号波。该研究的首席研究员张雨佳博士(牛津大学化学系)说:"微型软电源代表了生物集成设备的一个突破。通过利用离子梯度,我们开发出了一种微型、生物兼容的系统,可在微观尺度上调节细胞和组织,这为生物和医学领域的应用开辟了广阔的前景。"据研究人员称,该装置的模块化设计允许将多个单元组合在一起,以增加产生的电压和/或电流。这将为下一代可穿戴设备、生物混合界面、植入物、合成组织和微型机器人提供动力。通过将20个五液滴单元串联起来,他们能够照亮一个发光二极管,而这需要大约2伏特的电压。他们设想,通过使用液滴打印机等方式实现设备的自动化生产,可以生产出由数千个动力单元组成的液滴网络。这项研究的小组负责人哈根-贝利教授(牛津大学化学系)说:"这项工作解决了一个重要问题,即如何将软性生物兼容设备产生的刺激与活细胞结合起来。这对包括生物混合界面、植入物和微型机器人在内的设备具有重大潜在影响。"...PC版:https://www.cnbeta.com.tw/articles/soft/1381201.htm手机版:https://m.cnbeta.com.tw/view/1381201.htm

封面图片

国新证券:关注复合箔材、新型锂盐等方面的投资机会

国新证券:关注复合箔材、新型锂盐等方面的投资机会国新证券研报指出,经过多年高速发展,我国新能源汽车产销快速增长,渗透率逐年上升,动力电池需求旺盛,产业规模快速扩张。未来伴随新能源汽车渗透率进一步提升,以及应用场景的不断扩展,将对动力电池性能提出更高要求。随着双碳目标不断进,未来动力锂离子电池技术将更多关注快充、安全、成本和能量密度方面性能。建议关注高性能导电浆料、高压聚阴离子正极、复合箔材、新型锂盐和大圆柱等方面的投资机会。

封面图片

新型纳米带可提高电池和太阳能电池的效率

新型纳米带可提高电池和太阳能电池的效率研究人员通过将磷与砷进行合金化,创造出了一系列新型纳米材料图/Zhang等人/伦敦大学学院(CC-BY4.0)该研究的通讯作者之一亚当-克兰西(AdamClancy)说:"我们在将磷纳米带与砷合金化方面的最新工作开辟了更多可能性--特别是改善电池和超级电容器的能量存储,以及增强医学中使用的近红外探测器。"研究人员所说的纳米带是指一原子厚的磷带,或者更准确地说,phosphorene,一种由单层人工制造的层状黑磷(磷的最稳定形式)组成的二维材料。2019年,UCL的研究人员发现了磷纳米带的潜力,他们发现在过氧化物太阳能电池中加入一层磷纳米带,可以让电池从太阳中获取更多能量。在目前的研究中,为了提高磷的导电性,他们引入了"微量"砷。将磷和砷薄片形成的晶体与溶解在-58°F(-50°C)液氨中的锂混合。24小时后除去氨水,换上有机溶剂。由于薄片的原子结构,锂离子只能沿一个方向移动,而不能横向移动,从而导致裂纹,形成带状。研究人员创造了一个新的纳米材料家族:砷磷合金纳米带(AsPNRs)。他们发现,砷磷合金纳米带在130K(-226°F/-140°C)以上具有高度导电性,同时保留了纯磷纳米带的有用特性。AsPNRs的一个关键特性是其极高的"空穴迁移率"。空穴是电子在电子传输过程中的反向伙伴,因此提高空穴的迁移率(衡量空穴在材料中移动速度的指标)有助于提高电流传输的效率。目前,磷纳米带要用作锂离子或钠离子电池的阳极材料,需要与碳等导电材料混合。研究人员说,由于AsPNRs能提高电池的能量存储量和充放电速度,因此可以省去碳填料。此外,他们还表示,在太阳能电池中使用AsPNRs将改善电荷在设备中的流动,从而提高电池的效率。克兰西说:"砷磷带还具有磁性,我们认为磁性来自沿边缘的原子,这使它们也有可能用于量子计算机。更广泛地说,这项研究表明,合金化是控制这一不断发展的纳米材料家族的特性,进而控制其应用和潜力的有力工具。"研究人员说,他们的AsPNRs可以在液体中大规模生产,然后可以用这种液体以低成本大量应用于不同的应用领域。这项研究发表在《美国化学学会杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1385697.htm手机版:https://m.cnbeta.com.tw/view/1385697.htm

封面图片

科学家开发出可永久运行的新型泥土动力燃料电池

科学家开发出可永久运行的新型泥土动力燃料电池美国西北大学的研究人员推出了一种由土壤微生物驱动的燃料电池,其性能大大优于同类技术,并为低能耗设备提供了一种可持续的供电解决方案。燃料电池的3D打印帽露出地面。盖子可以防止碎屑进入设备,同时保证空气流通。图片来源:BillYen/西北大学为了测试这种新型燃料电池,研究人员用它为测量土壤湿度和探测触摸的传感器供电,这种能力对于追踪路过的动物非常有价值。为了实现无线通信,研究人员还为土壤供电传感器配备了一个微型天线,通过反射现有的无线电频率信号将数据传输到邻近的基站。这种燃料电池不仅能在潮湿和干燥的条件下工作,而且其功率比同类技术高出120%。这项研究成果将于今天(1月12日)发表在《交互、移动、可穿戴和泛在技术计算机械协会论文集》(ProceedingsoftheAssociationforComputingMachineryonInteractive,Mobile,Wearable,andUbiquitousTechnologies)上。研究报告的作者还将向公众发布所有设计、教程和模拟工具,以便其他人可以使用并在此基础上开展研究。"物联网(IoT)中的设备数量在不断增长,"领导这项工作的西北大学校友比尔-颜(BillYen)说。"如果我们想象未来会有数万亿台这样的设备,我们就不可能用锂、重金属和对环境有害的毒素来制造每一台设备。我们需要找到能够提供低能量的替代品,为分散的设备网络供电。在寻找解决方案的过程中,我们将目光投向了土壤微生物燃料电池,它利用特殊微生物分解土壤,并利用低能量为传感器供电。只要土壤中有供微生物分解的有机碳,燃料电池就有可能永远持续下去"。该研究的主要作者比尔-颜(BillYen)在西北大学实验室测试时埋入燃料电池。资料来源:美国西北大学西北大学的GeorgeWells是这项研究的资深作者,他说:"这些微生物无处不在,它们已经生活在各处的土壤中。我们可以使用非常简单的工程系统来捕捉它们的电力。我们不会用这种能量为整个城市供电。但我们可以捕获微量的能量,为实用的低功率应用提供燃料。"威尔斯是西北大学麦考密克工程学院土木与环境工程系副教授。Yen现在是斯坦福大学的博士生,当他还是Wells实验室的一名本科生研究员时,就开始了这个项目。近年来,全球越来越多的农民采用精准农业作为提高作物产量的策略。这种技术驱动的方法依靠精确测量土壤中的水分、养分和污染物含量,从而做出提高作物健康水平的决策。这需要一个广泛、分散的电子设备网络来持续收集环境数据。Yen说:"如果你想在野外、农场或湿地安装传感器,你只能在传感器上安装电池或收集太阳能。太阳能电池板在肮脏的环境中无法正常工作,因为它们会被灰尘覆盖,在太阳不出来的时候无法工作,而且会占用很大的空间。电池也具有挑战性,因为它们会耗尽电力。农民不会绕着100英亩的农场定期更换电池或清除太阳能电池板上的灰尘。"为了克服这些挑战,威尔斯、Yen和他们的合作者想知道,他们是否可以从现有环境中获取能量,也就是从农民正在监测的土壤中获取能量。基于土壤的微生物燃料电池(MFC)于1911年首次出现,其工作原理与电池类似--具有阳极、阴极和电解质。但MFC并不使用化学物质来发电,而是从细菌中获取电能,这些细菌会自然地向附近的导体提供电子。当这些电子从阳极流向阴极时,就形成了一个电路。燃料电池从地下取出进行研究后,被泥土覆盖。图片来源:BillYen/西北大学但是,为了让微生物燃料电池不受干扰地运行,它们需要保持水分和氧气,而这在埋于地下的干燥泥土中是很难做到的。Yen说:"虽然MFC作为一种概念已经存在了一个多世纪,但其不可靠的性能和低输出功率阻碍了人们对其进行实际应用,尤其是在低湿度条件下。"考虑到这些挑战,Yen和他的团队开始了为期两年的开发实用、可靠的基于土壤的MFC的旅程。他的考察包括创建和比较四种不同的版本。首先,研究人员对每种设计的性能进行了长达九个月的数据收集。然后,他们在室外花园测试了最终版本。性能最好的原型既能在干燥条件下工作,也能在水浸环境下工作。其成功的秘诀是它的几何形状。获胜的燃料电池没有采用阳极和阴极相互平行的传统设计,而是采用了垂直设计。阳极由碳毡(一种廉价、丰富的导体,可捕捉微生物的电子)制成,与地表水平。阴极由惰性导电金属制成,垂直置于阳极之上。虽然整个装置是埋在地下的,但垂直设计确保了上端与地表齐平。设备顶部有一个3D打印的盖子,以防止碎片掉落。顶部的小孔和阴极旁的空气室可以保证稳定的气流。阴极的下端一直深埋在地表之下,确保它能从周围潮湿的土壤中保持水分,即使地表土壤在阳光下变干也是如此。研究人员还在阴极的一部分涂上了防水材料,使其在洪水中能够呼吸。而且,在可能发生的洪水过后,垂直设计还能使阴极逐渐变干,而不是一下子变干。平均而言,由此产生的燃料电池所产生的电量是传感器运行所需电量的68倍。它还足够坚固耐用,能够承受土壤水分的巨大变化--从略微干燥(体积含水量为41%)到完全浸入水中。研究人员说,他们的土基MFC的所有组件都可以在当地五金店买到。下一步,他们计划开发一种由完全可生物降解材料制成的土基MFC。这两种设计都绕过了复杂的供应链,避免了使用冲突矿产。"通过COVID-19大流行,我们都熟悉了危机是如何扰乱全球电子产品供应链的,"该研究的合著者、前西北大学教师、现就职于佐治亚理工学院的乔赛亚-赫斯特(JosiahHester)说。"我们希望制造出使用本地供应链和低成本材料的设备,让所有社区都能获得计算能力"。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415961.htm手机版:https://m.cnbeta.com.tw/view/1415961.htm

封面图片

纳米线创新:科学家以更高的耐用性革新燃料电池

纳米线创新:科学家以更高的耐用性革新燃料电池电极中垂直排列的同轴纳米线,质子在纳米线内部的离子芯中传输。铂纳米薄膜外壳中传输的电子与氧气结合,完成燃料电池阴极反应。来源:LANL与其他设计相比,这种创新电极由不易腐蚀的纳米线组成,是聚合物电解质膜燃料电池的核心,它可以让燃料电池使用氢气作为汽车的无排放动力。洛斯阿拉莫斯国家实验室团队的科学家雅各布-斯本德洛(JacobSpendelow)在《先进材料》(AdvancedMaterials)杂志上介绍了他们的研究成果。"这项工作表明,我们可以摆脱传统的碳基催化剂载体,消除与碳腐蚀相关的降解问题,同时还能实现较高的燃料电池性能"。耐久性的增强使这种燃料电池有望应用于重型卡车,在这种应用中,燃料电池的寿命必须超过25000小时。同轴纳米线电极(CANE)由垂直排列的纳米线阵列组成,其中每根纳米线都由催化活性铂膜构成,铂膜围绕着离子传导聚合物芯。通过避免使用碳基催化剂支架,CANE消除了与碳腐蚀相关的常见降解机制。为了评估新型燃料电池的耐用性,洛斯阿拉莫斯国家实验室的团队进行了加速应力测试。值得注意的是,在针对支持材料进行了5000次应力测试循环后,CANE的性能损失仅为2%。相比之下,传统的碳基电极性能则下降了惊人的87%。同轴纳米线方法是洛斯阿拉莫斯国家实验室开发的几种新型燃料电池设计之一。...PC版:https://www.cnbeta.com.tw/articles/soft/1380263.htm手机版:https://m.cnbeta.com.tw/view/1380263.htm

封面图片

创新系统可扬长避短 将海水转化为氢燃料

创新系统可扬长避短将海水转化为氢燃料他们的创新设计被证明成功地产生了氢气,而同时没有产生大量的有害副产品。他们的研究结果最近发表在《焦耳》杂志上,可以帮助推进生产低碳燃料的努力。"今天许多水变氢系统试图使用单层或单层膜。我们的研究将两层膜结合在一起,"SLAC-斯坦福联合研究所SUNCAT界面科学和催化中心的副研究员AdamNielander说。"这些膜结构使我们能够在实验中控制海水中离子的移动方式。"氢气是一种低碳燃料,目前被用于许多方面,例如运行燃料电池电动汽车,以及作为一种长期的能源储存选择--一种适合储存几周、几个月或更长的能源,可用于电网。许多制造氢气的尝试从淡化水开始,但这些方法可能是昂贵的,而且是能源密集型的。处理过的水更容易操作,因为它有更少的化学元素漂浮在周围。然而,研究人员说,净化水过程是昂贵的,需要大量能源并增加了设备的复杂性。另一种选择,即天然淡水也包含一些对现代技术来说有问题的杂质,此外,它还是地球上一种比较有限的资源。为了使用海水,该团队实施了一个双极或两层的膜系统,并使用电解进行测试,这是一种利用电力驱动离子或带电元素来运行所需反应的方法。SLAC和斯坦福大学的博士后研究员JosephPerryman说,他们的设计从控制对海水系统最有害的元素--氯化物开始。Perryman说:"海水中有许多活性物种可以干扰水到氢气的反应,而使海水变咸的氯化钠是主要的罪魁祸首之一。特别是,到达阳极并氧化的氯化物将减少电解系统的寿命,并且由于氧化产物的毒性,包括分子氯和漂白剂,实际上可能变得不安全。"实验中的双极膜允许进入制造氢气所需的条件,并减轻氯气进入反应中心的影响。理想的膜系统将执行三个主要功能:从海水中分离氢气和氧气;只帮助移动有用的氢气和氢氧根离子,同时限制其他海水离子;以及帮助防止不希望发生的反应。把这三者结合起来是很难的,该团队的研究目标是探索能够有效结合这三种需求的系统。具体到他们的实验中,质子,也就是正氢离子,通过其中一个膜层到达一个地方,在那里它们可以被收集,并通过与一个带负电的电极相互作用变成氢气。系统中的第二层膜只允许负离子,如氯化物,通过。斯坦福大学化学工程系研究生和共同作者DanielaMarin说,作为额外的后盾,一个膜层包含固定在膜上的带负电的基团,这使得其他带负电的离子,如氯化物,更难移动到它们不应该去的地方。事实证明,在该团队的实验中,带负电荷的膜能高效地阻挡几乎所有的氯离子,而且他们的系统在运行时不会产生漂白剂和氯气等有毒副产品。研究人员说,除了设计一个海水到氢气的膜系统外,这项研究还提供了一个关于海水离子如何通过膜移动的更好的一般理解。这些知识可以帮助科学家为其他应用设计更强大的膜,例如生产氧气。"对于使用电解法生产氧气也有一些兴趣,"Marin说。"了解我们的双极膜系统中的离子流和转换对于这项工作也是至关重要的。在我们的实验中生产氢气的同时,我们还展示了如何使用双极膜来产生氧气。"接下来,该团队计划通过使用更丰富和更容易开采的材料来改进他们的电极和膜。该团队说,这种设计改进可以使电解系统更容易扩展到为能源密集型活动(如交通部门)产生氢气所需的规模。研究人员还希望将他们的电解池带到SLAC的斯坦福同步辐射光源(SSRL),在那里他们可以利用该设施的强烈X射线研究催化剂和膜的原子结构。"绿色氢气技术的前景是光明的,"SLAC和斯坦福大学教授兼SUNCAT主任ThomasJaramillo说。"我们正在获得的基本见解是为未来创新提供信息的关键,以提高该技术的性能、耐久性和可扩展性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1362511.htm手机版:https://m.cnbeta.com.tw/view/1362511.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人