生物学家构建了迄今为止最全面的鸟类族谱图 时间横跨9300万年

生物学家构建了迄今为止最全面的鸟类族谱图时间横跨9300万年这些技术使研究人员能够高精度、高速度地分析大量基因组数据,为构建有史以来最全面的鸟类家谱奠定了基础。4月1日发表在《自然》(Nature)和《美国国家科学院院刊》(PNAS)上的两篇互补性论文详细介绍了这一进展。《自然》杂志报道的更新家系揭示了6600万年前恐龙灭绝后鸟类进化史的模式。发表在《自然》杂志上的最新鸟类家谱,勾勒出363种鸟类之间9,300万年的进化关系。图片来源:JonFjeldså(绘图)和JosefinStiller研究人员观察到,早期鸟类的有效种群数量、替代率和相对脑容量都急剧增加,这为我们揭示这一关键事件之后推动鸟类多样化的适应机制提供了新的线索。在发表于《美国国家科学院院刊》(PNAS)的相关论文中,研究人员仔细研究了新家谱的一个分支,发现火烈鸟和鸽子的亲缘关系比之前的全基因组分析所显示的更远。这项工作是由哥本哈根大学、浙江大学和加州大学圣地亚哥分校牵头的多机构合作项目"鸟类万基因组(B10K)项目"的一部分,该项目旨在为约10500种现存鸟类生成基因组序列草案。"我们的目标是重建所有鸟类的整个进化史,"加州大学圣地亚哥分校雅各布斯工程学院电子与计算机工程教授西亚瓦什-米拉拉布说,他是《自然》论文的共同资深作者,也是《美国科学院院报》论文的第一作者和共同通讯作者。这些研究的核心是一套名为"ASTRAL"的算法,米拉拉布实验室开发了这套算法,以前所未有的可扩展性、准确性和速度推断进化关系。通过利用这些算法的强大功能,研究小组整合了来自6万多个基因组区域的基因组数据,为他们的分析提供了强大的统计基础。研究人员随后研究了整个基因组中各个片段的进化历史。在此基础上,他们拼凑出了一棵马赛克基因树,然后将其编入一棵综合物种树。这种细致入微的方法使研究人员能够构建一个新的、经过改进的鸟类家系,即使在历史不确定的情况下,也能非常精确和详细地描述复杂的分支事件。米拉拉布说:"我们发现,我们在分析中加入数万个基因的方法实际上是解决鸟类物种之间进化关系的必要条件。需要所有这些基因组数据,才能以很高的置信度还原6500万-6700万年前的这段特定时期发生了什么"。在发表于《美国国家科学院院刊》(PNAS)上的这项研究中,研究人员仔细研究了更新的鸟类家谱中的一个分支,发现包括火烈鸟和鸽子在内的鸟类群体的亲缘关系比以前的全基因组分析所显示的要远,并将这一结果归因于第4号染色体上的一个不寻常区域。图片来源:EdBraun(绘图)、DanielJ.Field(鸟类图片)和SiavashMiarab该团队之所以能够在海量数据集上进行这些分析,是因为米拉拉布实验室设计的计算方法能够在功能强大的GPU机器上运行。他们在加州大学圣地亚哥分校圣地亚哥超级计算机的Expanse超级计算机上进行了计算。米拉拉布说:"我们很幸运能够使用如此高端的超级计算机。如果没有Expanse,我们就无法在合理的时间内对如此庞大的数据集进行运行和重新运行分析。"研究人员还研究了不同基因组取样方法对树的准确性的影响。他们发现,两种策略--对每个物种的许多基因进行测序,以及对许多物种进行测序--结合在一起,对重建这一进化史非常重要。哥本哈根大学生物学教授、《自然》论文第一作者约瑟芬-斯蒂勒(JosefinStiller)说:"因为混合使用了这两种策略,所以我们可以测试哪种方法对系统发育重建的影响更大,从每种生物体中采样许多基因序列比从更广泛的物种中采样更重要,尽管后一种方法有助于我们确定不同群体进化的时间。"借助先进的计算方法,研究人员还揭示了他们在之前的一项研究中发现的不寻常之处:鸟类基因组中一条染色体的特定部分数百万年来一直保持不变,没有出现预期的基因重组模式。这一反常现象最初导致研究人员错误地把火烈鸟和鸽子归为进化上的表亲,因为根据这一段未变的DNA,它们似乎关系密切。这是因为他们之前的分析是基于48种鸟类的基因组。但通过使用363个物种的基因组重复分析,他们发现了一个更准确的家族树,它将鸽子与火烈鸟的关系进一步拉近。此外,通过使用由洛克菲勒大学神经生物学教授埃里希-贾维斯(ErichJarvis)领导的脊椎动物基因组计划(VertebrateGenomeProject,VGP)提供的六个高质量基因组,米拉布及其同事能够发现并推测出这种令人惊讶的模式。佛罗里达大学生物学教授、《美国科学院院刊》(PNAS)论文共同通讯作者爱德华-布劳恩(EdwardBraun)说:"令人惊讶的是,这段被抑制的重组时期可能会误导分析。正因为它可能会误导分析,所以在未来的6000多万年后,它实际上是可以被检测到的。这才是最酷的部分。"这项工作的影响远远超出了对鸟类进化史的研究。米拉拉布实验室首创的计算方法已成为重建其他各种动物进化树的标准工具之一。下一步,研究小组将继续努力构建鸟类进化的完整图景。生物学家们正在对更多鸟类物种的基因组进行测序,希望能将家谱扩展到数千个鸟属。与此同时,米拉拉布领导的计算科学家们正在改进他们的算法,以适应更大的数据集,确保在未来的研究中能够高速、准确地进行分析。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428533.htm手机版:https://m.cnbeta.com.tw/view/1428533.htm

相关推荐

封面图片

量子磁感应:生物学家探寻鸟类导航的进化秘密

量子磁感应:生物学家探寻鸟类导航的进化秘密黄腹纹霸鹟(Empidonaxflaviventris)是一种小型食虫鸟,它不能产生隐花色素4蛋白。这种鸟在北美洲繁殖,冬季迁徙到墨西哥南部和中美洲。图片来源:CorinnaLangebrake一项新的基因研究表明,鸟类眼睛中的隐花色素4蛋白是鸟类磁导航能力的关键,其进化变化凸显了它在适应不同环境中的作用。研究小组在最近发表于英国皇家学会研究期刊《英国皇家学会生物科学院院刊》(ProceedingsoftheRoyalSocietyBBiologicalSciences)上的一篇论文中报告说,这些发现表明隐花色素4能够适应不同的环境条件,并支持隐花色素4具有传感器蛋白功能的理论。奥尔登堡大学和牛津大学的研究表明,磁感应是基于候鸟视网膜上某些细胞中发生的复杂量子力学过程。这些研究成果于2021年发表在科学杂志《自然》上,为隐花色素4就是他们一直在寻找的磁感受器这一假设提供了支持证据。他们证明了隐花色素4存在于鸟类的视网膜中。此外,用细菌生产的蛋白质进行的实验和模型计算都表明,隐花色素4在对磁场做出反应时表现出可疑的量子效应。之前的研究还发现,知更鸟等候鸟体内的隐花色素4对磁场的敏感性要高于鸡和鸽子等留鸟。"因此,隐花色素4在知更鸟身上比在鸡和鸽子身上更敏感的原因必须从该蛋白质的DNA序列中找到,"该研究的第一作者兰格布拉克说。"她补充说:"在这些夜间迁徙的鸟类中,该序列可能在进化过程中得到了优化。"在目前的研究中,研究小组首次从进化的角度研究了磁感应。研究人员分析了363种鸟类的隐花色素4基因。首先,他们比较了该蛋白质与两种相关隐花色素的进化速度,发现用于比较的隐花色素基因序列在所有鸟类物种中都非常相似。它们在进化过程中似乎变化很小。这很可能是由于它们在调节体内时钟方面起着关键作用--这种机制对所有鸟类来说都是必不可少的,改变这种机制会产生极其不利的影响。与此相反,隐花色素4被证明具有高度可变性。奥尔登堡大学鸟类学教授、鸟类研究所所长利德沃格尔解释说:"这表明,这种蛋白质对于适应特定环境条件非常重要。由此产生的特殊化可能就是磁感应。在其他感官蛋白中也观察到了类似的模式,例如眼睛中的光敏色素。"研究人员随后仔细研究了隐花色素4的基因序列在鸟类进化史中的演变过程。他们的分析揭示了一个值得注意的趋势,尤其是在雀形目(Passeriformes)中,这种蛋白质通过快速选择经历了重大优化。研究结果表明,进化过程可能导致隐花色素4在鸣禽中专门用作磁感受器。研究发现,某些鸟类支系中不存在隐花色素4,如鹦鹉、蜂鸟和霸鹟(Suboscines)。这表明隐花色素4在它们的生存中并不起重要作用。然而,鹦鹉和蜂鸟是定居型鸟类,而一些霸鹟鸟类则是长途迁徙型鸟类,它们与欧洲的小型鸣禽一样,白天和晚上都会飞行。这就提出了一个问题:霸鹟是否发展出了一种独立于隐花色素4之外的磁感,或者它们是否能够在没有磁感的情况下确定自己的方向?另一种可能是,它们的磁感与知更鸟的磁感具有相同的特性,后者依赖于光线,并且会被无线电波干扰。这位生物学家强调说:"前两种情况将有力地证实隐色4假说,而第三种情况则会给这一理论带来问题。"Liedvogel说:"霸鹟亚目为我们了解隐花色素4的功能和候鸟磁感应的重要性提供了一个天然的工具。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429969.htm手机版:https://m.cnbeta.com.tw/view/1429969.htm

封面图片

生物学家首次恢复了已灭绝物种袋狼的RNA分子

生物学家首次恢复了已灭绝物种袋狼的RNA分子塔斯马尼亚虎又称袋狼,是一种历史上的顶级食肉有袋类动物,曾经分布于澳大利亚大陆和塔斯马尼亚岛。这种非凡的物种在欧洲殖民统治后最终灭绝,当时它被宣布为农业害兽,到1888年,每捕杀一只成年动物就会得到1英镑的赏金。已知最后一只活着的塔斯马尼亚虎于1936年死于塔斯马尼亚霍巴特的博马里斯动物园(BeaumarisZoo)。最近拯救灭绝物种的努力主要集中在塔斯马尼亚虎身上,因为它在塔斯马尼亚的自然栖息地大部分仍然保存完好,重新引进它有助于恢复它最终消失后失去的生态系统平衡。然而,要重建一只功能正常的活体塔斯马尼亚虎,不仅需要全面了解其基因组(DNA),还需要了解特定组织的基因表达动态和基因调控方式,而这些只有通过研究其转录组(RNA)才能实现。科学生命实验室(SciLifeLab)的研究人员与瑞典自然历史博物馆和斯德哥尔摩大学合资成立的古遗传学中心(CentreforPaleogenetics)合作,最近在《基因组研究》(GenomeResearch)杂志上发表了一项研究,该研究的第一作者埃米利奥-马尔莫尔(EmilioMármol)说:"复活塔斯马尼亚虎或长毛猛犸象不是一件小事,需要深入了解这些著名物种的基因组和转录组调控,而这一切现在才刚刚开始揭示。"这项研究背后的研究人员首次对斯德哥尔摩瑞典自然历史博物馆室温保存的130年前干燥的塔斯马尼亚虎标本的皮肤和骨骼肌组织的转录组进行了测序。结果发现了组织特异性基因表达特征,与现存有袋动物和胎盘哺乳动物的基因表达特征相似。恢复的转录组质量很高,可以识别肌肉和皮肤特异性蛋白质编码RNA,并根据MirGeneDB的建议对缺失的核糖体RNA和microRNA基因进行注释。斯德哥尔摩大学温纳-格伦研究所分子生物科学系副教授马克-弗里德兰德(MarcR.Friedländer)和科学生命实验室(SciLifeLab)说:"这是我们第一次窥见一个多世纪前就已经灭绝的、专门针对泰加动物的调控基因(如microRNA)的存在。"这项开创性的研究为探索全球各地博物馆收藏的大量标本和组织提供了新的机遇和意义,这些标本和组织中的RNA分子可能正等待着我们去发掘和测序。斯德哥尔摩大学和古遗传学中心的进化基因组学教授洛夫-达伦(LoveDalén)说:"将来,我们可能不仅能从已灭绝的动物身上恢复RNA,还能从博物馆收藏的蝙蝠皮和其他宿主生物身上恢复RNA病毒基因组,如SARS-CoV2及其进化前体。"这项研究的作者表示,他们对未来整合基因组学和转录组学的整体研究发展感到兴奋,希望能在DNA之外开创古遗传学的新纪元。...PC版:https://www.cnbeta.com.tw/articles/soft/1385249.htm手机版:https://m.cnbeta.com.tw/view/1385249.htm

封面图片

挑战主流观点:4.5万年前的古代DNA揭示了隐藏的人类历史

挑战主流观点:4.5万年前的古代DNA揭示了隐藏的人类历史"人们普遍认为我们人类祖先的遗传学没有像其他动物那样因环境压力而发生变化,因为我们的沟通能力和制造及使用工具的能力增强了,"Souilmi博士说。然而,通过比较现代基因组和古代DNA,研究人员发现了50多个最初罕见的有益基因变体在古代人类群体的所有成员中变得普遍的案例。与许多其他物种相比,这种类型的适应性遗传变化的证据在人类中是不一致的。因此,这一发现挑战了关于人类适应性的主流观点,使我们对人类如何适应他们在地球上传播时遇到的新环境压力有了新的和令人兴奋的认识。共同牵头人、阿德莱德大学兼职研究员和澳大利亚国立大学DECRA研究员雷-托布勒博士说,检查古代DNA对于揭示人类进化的秘密至关重要。托布勒博士说:"我们相信人类群体之间的历史性混合事件可能隐藏了现代人类基因组中的遗传变化迹象。我们检查了来自1000多个古代基因组的DNA,其中最古老的基因组大约有45000年的历史,以了解某些类型的遗传适应在我们的历史上是否比现代基因组的研究更常见。Huber教授说:"使用古代基因组是至关重要的,因为它们在重大的历史混合事件之前,这些事件从根本上重塑了现代欧洲人的遗传血统。这使得我们能够恢复现代基因组的标准分析所看不到的历史性适应迹象。"研究论文的资深作者ChristianHuber教授是阿德莱德大学的兼职研究员和宾州州立大学的助理教授。...PC版:https://www.cnbeta.com.tw/articles/soft/1334779.htm手机版:https://m.cnbeta.com.tw/view/1334779.htm

封面图片

古生物学家发现距今1800万年的新品种虾虎鱼化石

古生物学家发现距今1800万年的新品种虾虎鱼化石勒芒大学古生物学家发现了一种新的虾虎鱼化石属,揭示了虾虎鱼这一欧洲最多样化鱼类的早期进化阶段和栖息地适应性。图为新属†Simpsonigobius的鱼化石。图片来源:MoritzDirnberger通过鉴定淡水虾虎鱼化石的一个新属,卢塞恩大学"地球生物学和古生物学"国际硕士课程的学生和卢塞恩大学地球与环境科学系教授、古生物学家贝蒂娜-莱辛巴赫(BettinaReichenbacher)取得了一项发现,为了解这些鱼类的进化史提供了重要依据。新属†Simpsonigobius小鱼在土耳其距今1800万年前的岩石中被发现,其最大尺寸为34毫米,具有独特的形态特征组合,包括形状独特的耳石(听石)。为了确定†Simpsonigobius在鹅膏鱼系统发育树中的关系,研究人员利用了一个"总证据"系统发育数据集,并对该数据集进行了改进,以便将48个活体物种和10个化石物种的48个形态特征和来自5个基因的遗传数据结合起来。此外,研究小组还首次对虾虎鱼化石物种采用了"尖端定年法"。这是一种系统发生学方法,利用系统发生树中化石(=尖端)的年龄来推断整个类群进化历史的时间。研究结果表明,新属是"现代"虾虎鱼科(虾虎鱼科和背眼虾虎鱼科)中拥有同类骨骼的最古老成员,也是现代虾虎鱼科中最古老的淡水虾虎鱼。尖端定年分析估计戈壁虾虎鱼科出现于距今3410万年前,而牛虾虎鱼科出现于距今3480万年前,这与之前使用其他方法进行的定年研究一致。此外,研究人员首次将虾虎鱼化石纳入随机栖息地绘图中,发现虾虎鱼在其进化史的初期可能具有广泛的耐盐性,这对之前的假设提出了挑战。"†Simpsonigobius的发现不仅为Gobioidei鱼类增添了一个新属,而且为这些多样化鱼类的进化时间表和栖息地适应性提供了重要线索。我们的研究凸显了利用现代方法分析化石记录以更准确地了解进化过程的重要性,"Reichenbacher说。第一作者莫里茨-迪恩伯格(MoritzDirnberger)目前是蒙彼利埃大学的博士生,他补充道:"这些发现有望为进一步研究虾虎鱼的进化以及环境因素在形成其多样性方面的作用铺平道路。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434976.htm手机版:https://m.cnbeta.com.tw/view/1434976.htm

封面图片

生物学家利用18亿个遗传密码字母构建出突破性的开花植物生命树

生物学家利用18亿个遗传密码字母构建出突破性的开花植物生命树在邱园皇家植物园科学家的领导下,研究小组相信这些数据将有助于今后识别新物种、完善植物分类、发现新的药用化合物,以及在气候变化和生物多样性丧失的情况下保护植物。这项植物科学领域的重大里程碑研究涉及138个国际组织,其所依据的数据量是对有花植物生命树进行的同类研究的15倍。在为这项研究进行测序的物种中,有800多个物种的DNA以前从未被测序过。这项研究揭示的数据量之大,需要一台计算机花费18年的时间才能处理完毕,这是邱园"生命之树计划"在为所有33万种已知有花植物建立生命之树方面迈出的一大步。"分析这一前所未有的数据量,解码隐藏在数百万DNA序列中的信息,是一项巨大的挑战。但这也为我们重新评估和扩展对植物生命树的认识提供了一个独特的机会,为探索植物进化的复杂性打开了一扇新窗口,"邱园皇家植物园研究员亚历山大-尊蒂尼(AlexandreZuntini)说。马萨诸塞大学进化生物学家斯蒂芬-史密斯(StephenSmith)实验室的博士后研究员汤姆-卡鲁瑟(TomCarruthers)是这项研究的共同第一作者,他与尊蒂尼曾在邱园共事。马萨诸塞大学植物系统学家理查德-拉贝勒(RichardRabeler)是该研究的共同作者。被子植物生命之树。资料来源:RBGKew"每当我们走进森林,开花植物都会为我们提供食物、衣物和问候。一个多世纪以来,构建开花植物生命树一直是进化生物学领域的重大挑战和目标,"这项研究的共同作者、麻省理工大学生态学与进化生物学系教授史密斯说。"这个项目为大多数有花植物属提供了一个庞大的数据集,为完成这一目标提供了一种策略,从而使我们离这一目标更近了一步。"史密斯在该项目中扮演了两个角色。首先,他的实验室成员--包括麻省理工大学前研究生德鲁-拉尔森(DrewLarson)--前往邱园,帮助对一个名为"Ericales"的大型多样性植物群的成员进行测序,该植物群包括蓝莓、茶、杜鹃花、杜鹃花和巴西坚果。其次,史密斯与邱园皇家植物园的威廉-贝克(WilliamBaker)和费利克斯-弗雷斯特(FelixForest)以及奥胡斯大学的沃尔夫-艾森哈特(WolfEisenhardt)共同监督了项目数据集的分析和构建。"研究小组面临的最大挑战之一是许多基因区域所蕴含的意想不到的复杂性,在这些区域中,不同的基因讲述着不同的进化史。团队面临的最大挑战之一是许多基因区域所蕴含的意想不到的复杂性,不同的基因讲述着不同的进化历史。我们必须开发出一种程序,以前所未有的规模来研究这些模式。"作为这项研究的共同负责人,卡鲁瑟的主要职责包括利用200块化石将进化树按时间进行缩放,分析整体进化树基础基因的不同进化史,以及估算不同开花植物系在不同时期的多样化率。卡鲁瑟说:"基于如此多的基因,为有花植物构建如此庞大的生命树,揭示了这一特殊群体的进化史,帮助我们了解它们是如何成为世界上如此不可或缺的主要组成部分的。所展示的进化关系--以及这些关系所依据的数据--将为今后的大量研究奠定重要基础。"开花植物的生命树就像我们的家谱一样,能让我们了解不同物种之间的关系。生命树是通过比较不同物种之间的DNA序列来发现变化(突变)的,这些变化随着时间的推移不断累积,就像分子化石记录一样。随着DNA测序技术的进步,我们对生命之树的了解也在迅速加深。在这项研究中,我们开发了新的基因组技术,通过磁力从每个样本中捕捉数百个基因和数十万个遗传密码,比早期的方法多出几个数量级。Arenariaglobilfora.资料来源:RBGKew该研究小组的方法的一个主要优势是,它能对多种多样的新老植物材料进行测序,即使DNA受到严重破坏也不例外。世界标本馆收藏了近4亿份植物科学标本,其中有大量的干燥植物材料,现在可以对它们进行基因研究了。邱园生命之树计划的高级研究负责人贝克说:"从很多方面来说,这种新颖的方法使我们能够与过去的植物学家合作,利用历史标本馆标本中的大量数据,其中一些标本早在19世纪初就被收集起来了。我们杰出的前辈,如查尔斯-达尔文或约瑟夫-胡克,不可能预料到这些标本在今天的基因组研究中会如此重要。在他们的有生之年,DNA甚至还没有被发现。我们的工作表明,这些令人难以置信的植物博物馆对于地球生命的开创性研究有多么重要。谁知道其中还蕴藏着哪些未被发现的科学机遇呢?"在所有9506个测序物种中,有3400多个来自48个国家163个标本馆的材料。马萨诸塞大学名誉研究科学家、马萨诸塞大学标本馆前馆长拉贝勒说:"为研究植物关系而对标本馆标本进行采样,使得从世界不同地区进行广泛采样的可行性大大提高,而不需要长途跋涉从野外获取新鲜材料。"在生命之树项目中,拉贝勒帮助核实了标本馆采样标本的身份,并对所得数据进行了分析。仅开花植物就占陆地上所有已知植物生命的90%,几乎遍布地球的每一个角落--从最湿润的热带到南极半岛的岩石露头。然而,我们对这些植物是如何在起源后不久就占据了主导地位的理解,却困惑了包括达尔文在内的几代科学家。开花植物起源于1.4亿多年前,之后迅速取代了其他维管植物,包括它们的近亲--裸子植物(有裸露种子的非开花植物,如苏铁、针叶树和银杏)。达尔文对化石记录中看似突然出现的这种多样性感到神秘。在1879年写给他的密友、邱园皇家植物园园长胡克的信中,他写道:"据我们判断,所有高等植物都是在最近的地质年代迅速发展起来的,这是一个令人憎恶的谜。"作者利用200块化石,将他们的生命树按时间顺序排列,揭示了开花植物是如何跨越地质年代进化的。他们发现,早期有花植物的多样性确实出现了爆炸性增长,在其起源后不久就产生了今天存在的80%以上的主要品系。然而,在接下来的1亿年里,这一趋势逐渐趋于平稳,直到大约4000万年前,随着全球气温的下降,物种多样性再次激增。这些新的洞察力会让达尔文着迷,也必将帮助今天的科学家们努力应对了解物种如何以及为什么会多样化的挑战。如果没有邱园科学家与全球众多合作伙伴的通力合作,就不可能形成如此庞大的生命之树。总共有279位作者参与了这项研究,他们来自27个国家的138个组织,代表着不同的国籍。"植物界长期以来一直在合作和协调分子测序工作,以生成更全面、更强大的植物生命树。"马萨诸塞大学的史密斯说:"发表这篇论文的努力延续了这一传统,但规模却大大扩大了。"开花植物生命树在生物多样性研究方面具有巨大潜力。这是因为,正如人们可以根据元素在元素周期表中的位置来预测其特性一样,我们也可以根据物种在生命树中的位置来预测其特性。因此,这些新数据对于促进科学及其他许多领域的发展将是非常宝贵的。为实现这一目标,生命之树及其基础数据已通过邱园生命之树资源管理器(KewTreeofLifeExplorer)等渠道向公众和科学界公开和免费开放。开放访问将有助于科学家充分利用这些数据,例如将其与人工智能相结合,预测哪些植物物种可能含有具有药用潜力的分子。同样,生命之树也可用于更好地了解和预测病虫害在未来将如何影响植物。作者指出,这些数据的应用最终将取决于获取数据的科学家的聪明才智。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428708.htm手机版:https://m.cnbeta.com.tw/view/1428708.htm

封面图片

70万年前的毛发奇观:揭开猛犸象进化的基因之纱

70万年前的毛发奇观:揭开猛犸象进化的基因之纱一个研究小组比较了长毛象和现代大象的基因组,以找出是什么使长毛象作为个体和物种变得独特。调查人员今天(4月7日)在《当代生物学》杂志上报告说,长毛象的许多标志性特征--包括它们的毛大衣和大量的脂肪沉积--在最早的长毛象中已经有了基因编码,但是这些特征和其他特征在这个物种70多万年的存在中变得更加明确。他们还确定了一个有几个突变的基因,这些突变可能是造成长毛象微小耳朵的原因。斯德哥尔摩古遗传学中心的古遗传学家和第一作者DavidDíez-del-Molino说:"我们想知道是什么让猛犸象成为一头长毛猛犸象。长毛猛犸象有一些非常有特点的形态特征,比如它们厚厚的皮毛和小耳朵,显然可以根据冷冻标本的样子来预期,但是还有许多其他的适应性,比如脂肪代谢和寒冷感知,这些都不是那么明显,因为它们是在分子水平上。"这是一张毛猛犸象牙的照片,作者对其进行了整个基因组的测序。这根长毛象牙于2015年在西伯利亚东北部被发现,并被放射性碳测定为距今约18,000年。为了确定在长毛象中"高度进化"的基因--意味着它们积累了大量的突变--研究小组将23只西伯利亚长毛象的基因组与28只现代亚洲和非洲大象的基因组进行了比较。这些长毛象中有22只是相对现代的,生活在过去10万年内,其中16只的基因组以前没有被测序过。第二十三只长毛象的基因组属于已知最古老的长毛象之一,Chukochya,它生活在大约70万年前。高级作者、斯德哥尔摩古遗传学中心进化基因组学教授LoveDalén说:"有了Chukochya的基因组,我们就能确定一些在长毛象作为一个物种的生命周期中进化的基因。这使我们能够实时研究进化,我们可以说这些特定的突变是长毛象所特有的,它们在它的祖先中并不存在。"这是研究的共同作者LoveDalén与Yuka猛犸象的照片,其基因组被纳入分析。毫不奇怪,许多对长毛象有适应性的基因都与生活在寒冷环境中有关。这些基因中的一些被不相关的现代北极哺乳动物所共享。Díez-del-Molino说:"我们发现了一些与脂肪代谢和储存有关的高度进化的基因,这些基因在驯鹿和北极熊等其他北极物种中也有发现,这意味着这些基因在适应寒冷的哺乳动物中可能存在趋同进化。"虽然以前的研究已经考察了一两只长毛象的基因组,但这是第一次比较大量的长毛象基因组。这种大样本量使研究小组能够确定在所有长毛象中常见的基因,因此可能是适应性的,而不是可能只在单个个体中出现的基因突变。Díez-del-Molino说:"我们发现,一些以前被认为是长毛象的特殊基因实际上在长毛象之间是可变的,这意味着它们可能并不那么重要。"这是研究的共同作者MarianneDehasque在斯德哥尔摩古遗传学中心的古代DNA实验室工作的照片。总的来说,70万年前的Chukochya基因组共享大约91.7%的突变,这些突变引起了更现代的长毛象的蛋白质编码变化。这意味着,当长毛象第一次从其祖先草原猛犸象中分化出来时,许多长毛象的决定性特征--包括厚皮毛、脂肪代谢和寒冷感知能力--可能已经存在。然而,这些特征在楚科奇亚的后代中得到了进一步发展。"最早的长毛象还没有完全进化,"Dalén说,"它们可能有更大的耳朵,它们的毛也不同--与后来的长毛象相比,也许没有那么绝缘和蓬松。"更现代的长毛象在T细胞抗原上也有几个免疫突变,这在它们的祖先身上是看不到的。作者推测,这些突变可能赋予了增强的细胞介导的免疫力,以应对新出现的病毒病原体。与古代猛犸象DNA一起工作,会遇到一系列的障碍。Díez-del-Molino说:"从野外工作到实验室工作,再到生物信息学,每一步都会有一些困难。"所有基因组被纳入这项研究的猛犸象都是在西伯利亚收集的,但研究人员希望在未来能将北美的长毛象分支出来并进行比较。Dalén说:"我们几年前表明,在长毛猛犸象和哥伦比亚猛犸象的祖先之间存在着基因流动,所以这也是我们需要考虑的问题,因为北美长毛猛犸象可能也携带了非长毛猛犸象的基因。"...PC版:https://www.cnbeta.com.tw/articles/soft/1353571.htm手机版:https://m.cnbeta.com.tw/view/1353571.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人