中国科学家首次捕获全新长寿基因

中国科学家首次捕获全新长寿基因“通过全球寿命基因数据库比对,我们发现该长寿基因是国际上第8个具有广泛延长动物寿命的新基因。”论文通讯作者、浙江大学农业与生物技术学院研究员沈星星说。“远程”操控线粒体的核基因线粒体主要负责细胞的能量供应,是我们细胞内的重要成员。随着年龄的增长,线粒体功能往往会逐渐衰退。鉴于线粒体与衰老、神经退行性疾病、代谢性疾病、心血管疾病以及肿瘤等多种疾病的发生紧密相关,如何保持线粒体功能的稳态至关重要。“线粒体是一种很特别的细胞器,根据内共生理论,线粒体源自一种古老的α-变形菌,这种细菌被一个原始的真核细胞吞噬,但并未被消化,而是与宿主细胞形成了共生关系”论文第一作者、浙江大学博士生陶妹说,“线粒体内部至今仍然保存着属于自己的DNA,但同时,线粒体也受到细胞核内DNA的调控。线粒体与细胞核之间建立的相互交流和协作的稳定关系,就叫协同演化。”“我们可以把这种协同演化模式理解为,有两辆汽车以相同的速度并行行驶在道路上,彼此的速度变化紧密同步,一方的加速或减速会立即反映在另一方上。”沈星星解释,“但以往科学家的目光大多集中在线粒体本身,我们则是转换视角,将关注点放在与线粒体协同演化的细胞核上。”于是,研究团队综合了演化生物学、计算生物学、功能基因组学等多个交叉学科,系统性地挖掘“远程”操控线粒体进化的核基因。结果发现,有75个核基因与线粒体基因展现出显著的协同演化模式,它们表现出了各种不同的功能,包括端粒维持、核糖体生物发生、线粒体功能和DNA修复,而这些功能都与生命衰老和疾病显著相关。研究团队还挑选了其中四个核基因——CG13220,CG11837,Nop60B和CG11788,在果蝇体内进行了基因活性降低的实验。结果显示,与对照组相比,这四个基因的活性降低均导致了线粒体形态的异常。“延年益寿”全新基因沈星星打了一个比方,如果把生物体看成一台计算机,线粒体相当于电池,而细胞核就是CPU。“一台计算机的待机时间不仅与电池容量大小有关,也与CPU处理策略有关。”研究人员提出了一个关键问题:改变这些核基因的活力是否会影响动物的寿命?让研究团队惊喜的是,他们在四个核基因中发现了一个特别的存在——CG11837,不仅能够影响线粒体形态,它的活力还与动物的寿命长短存在显著的正相关性。为了寻找可靠证据,研究人员首先在六种不同的动物中进行了CG11837基因敲降实验,包含褐飞虱、果蝇、斯氏按蚊和秀丽隐杆线虫等。结果显示,在所有研究的动物中,降低CG11837基因的活力就会显著缩短它们的寿命,幅度在25%至59%之间。敲降基因会缩短寿命,反之,激活基因是否可以延长寿命?为此,研究人员又在果蝇和线虫中进行了该基因的过表达实验。结果显示,这两种动物的寿命均显著延长,幅度达到12%至35%。这一发现促使研究人员思考,该基因是否也能延长人类的寿命?于是,他们对人类离体细胞进行了实验,发现激活CG11837基因能够提升抗衰老能力30%。“这一系列研究证实了CG11837基因在动物中具有广泛的长寿效应。”沈星星兴奋表示。对于这项研究,《自然—衰老》三位匿名评审专家指出:该研究方法独特且新颖,从线粒体基因组—核基因组之间的共进化角度出发,打破了传统思维上的局限,挖掘到功能非常保守的新长寿基因,对衰老研究领域具有非常重要的科学价值和实践意义。而在谈到该研究成果的应用前景时,除了可以研发基于CG11837基因的药物和治疗方法,来延长人类健康寿命,主要从事昆虫分子生物学研究的沈星星还提到,在农业领域,该基因可以成为控制害虫的新靶点,进而减少对化学农药的依赖,实现环境友好的绿色防控;在公共卫生领域,可以通过干扰该基因表达来缩短蚊虫等传播疾病媒介的寿命,从而降低疟疾、登革热等传染病的传播风险,为蚊媒疾病防控和公共卫生安全提供新的解决方案。相关论文信息:https://doi.org/10.1038/s43587-024-00641-z 敲低CG11837基因后,黑腹果蝇脂肪体中线粒体的形态变得异常,呈现碎片化和聚集成簇的特征。图中蓝色为细胞核,绿色为多个线粒体,线粒体包围形成的黑色孔为脂肪滴。沈星星课题组供图...PC版:https://www.cnbeta.com.tw/articles/soft/1433670.htm手机版:https://m.cnbeta.com.tw/view/1433670.htm

相关推荐

封面图片

科学家成功转移长寿基因 为延长人类寿命铺平道路

科学家成功转移长寿基因为延长人类寿命铺平道路罗切斯特的研究人员通过将一种负责增强细胞修复和保护的特定基因引入小鼠体内,为揭开衰老的秘密和延长人类寿命开辟了令人兴奋的可能性。罗切斯特大学生物学和医学多丽丝-约翰斯-切瑞教授维拉-戈尔布诺娃说:"我们的研究提供了一个原理证明,即在长寿哺乳动物中进化出的独特长寿机制可以输出,以改善其他哺乳动物的寿命。"戈尔布诺娃与生物学教授安德烈-塞卢安诺夫及其同事在发表于《自然》的一项研究中报告说,他们成功地将裸鼹鼠体内负责制造高分子量透明质酸(HMW-HA)的基因转移到了小鼠体内。这改善了小鼠的健康状况,并使小鼠的中位寿命延长了约4.4%。抗癌的独特机制裸鼹鼠是一种小鼠体型的啮齿类动物,在同体型的啮齿类动物中寿命特别长;它们可以活到41岁,几乎是同体型啮齿类动物的十倍。与许多其他物种不同的是,裸鼹鼠在衰老过程中通常不会感染疾病,包括神经变性、心血管疾病、关节炎和癌症。戈尔布诺娃和塞卢安诺夫投入了数十年的研究,以了解裸鼹鼠用来保护自己免受衰老和疾病侵袭的独特机制。罗切斯特大学的研究人员成功地将裸鼹鼠的长寿基因转入小鼠体内,从而改善了小鼠的健康状况,延长了小鼠的寿命。图片来源:罗切斯特大学照片/J.AdamFenster研究人员之前发现,HMW-HA是裸鼹鼠对癌症具有非同寻常的抵抗力的机制之一。与小鼠和人类相比,裸鼹鼠体内的HMW-HA大约多十倍。当研究人员从裸鼹鼠细胞中移除HMW-HA时,细胞更容易形成肿瘤。戈尔布诺娃、塞卢阿诺夫及其同事希望观察HMW-HA的积极作用是否也能在其他动物身上重现。转移产生HMW-HA的基因研究小组对小鼠模型进行了基因改造,使其产生了裸鼹鼠版本的透明质酸合成酶2基因,该基因负责制造产生HMW-HA的蛋白质。虽然所有哺乳动物都有透明质酸合成酶2基因,但裸鼹鼠版本的基因似乎得到了增强,以驱动更强的基因表达。研究人员发现,拥有裸鼹鼠版本基因的小鼠对自发性肿瘤和化学诱导的皮肤癌有更好的保护作用。与普通小鼠相比,这些小鼠的总体健康状况也有所改善,寿命更长。随着裸鼹鼠版基因小鼠的衰老,它们身体不同部位的炎症减少了--炎症是衰老的标志--而且肠道也保持得更健康。虽然还需要进一步研究HMW-HA究竟为何具有如此有益的作用,但研究人员认为这是由于HMW-HA能够直接调节免疫系统。人类的青春之泉?这些发现为探索如何利用HMW-HA改善人类寿命和减少炎症相关疾病提供了新的可能性。"从在裸鼹鼠体内发现HMW-HA到证明HMW-HA能改善小鼠健康,我们花了10年时间,"戈尔布诺娃说。"我们的下一个目标是将这种益处转移到人类身上"。他们认为可以通过两种途径实现这一目标:一是减缓HMW-HA的降解,二是增强HMW-HA的合成。塞卢阿诺夫说:"我们已经确定了减缓透明质酸降解的分子,并正在进行临床前试验。希望研究结果将提供第一个,但不是最后一个例子,说明如何从长寿物种的长寿适应性调整到有利于人类的长寿和健康。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379861.htm手机版:https://m.cnbeta.com.tw/view/1379861.htm

封面图片

科学家成功对活体动物的单个细胞进行基因改造

科学家成功对活体动物的单个细胞进行基因改造研究人员开发出一种利用CRISPR-Cas技术同时修改成年动物细胞中多个基因的技术,这种技术创造出一种类似马赛克的模式,从而简化了遗传疾病的研究。这种方法揭示了对遗传疾病22q11.2缺失综合征的新认识,并有可能在未来减少动物实验的数量。资料来源:苏黎世联邦理工学院由巴塞尔苏黎世联邦理工学院生物系统科学与工程系生物工程教授兰德尔-普拉特领导的研究人员现在开发出了一种方法,可以大大简化和加快实验动物的研究:利用CRISPR-Cas基因剪刀,他们可以在一只动物的细胞中同时改变几十个基因,就像打马赛克一样。虽然每个细胞中改变的基因不超过一个,但一个器官中的不同细胞会以不同的方式发生改变。这样就可以对单个细胞进行精确分析。这样,研究人员就能在一次实验中研究多种不同基因变化的影响。根据最近发表在《自然》(Nature)杂志上的一份报告,苏黎世联邦理工学院的研究人员首次成功地将这种方法应用于活体动物,特别是成年小鼠。此前,其他科学家已经针对培养细胞或动物胚胎开发出了类似的方法。为了"告知"小鼠细胞CRISPR-Cas基因剪刀应该破坏哪些基因,研究人员使用了腺相关病毒(AAV),这是一种可以靶向任何器官的传递策略。他们制备了病毒,使每个病毒粒子都携带破坏特定基因的信息,然后用携带不同基因破坏指令的混合病毒感染小鼠。这样,他们就能关闭一个器官细胞中的不同基因。在这项研究中,他们选择了大脑。利用这种方法,苏黎世联邦理工学院的研究人员与日内瓦大学的同事一起,获得了人类一种罕见遗传疾病--22q11.2缺失综合征--的新线索。这种疾病的患者表现出许多不同的症状,通常被诊断为精神分裂症和自闭症谱系障碍等其他疾病。在此之前,人们知道这种疾病是由一个包含106个基因的染色体区域引起的。人们还知道这种疾病与多种基因有关,但不知道哪些基因在疾病中起作用。在对小鼠的研究中,研究人员重点研究了这一染色体区域中同样在小鼠大脑中活跃的29个基因。在每只小鼠的脑细胞中,他们修改了这29个基因中的一个,然后分析了这些脑细胞的RNA图谱。科学家们能够证明,其中三个基因在很大程度上导致了脑细胞的功能障碍。此外,他们还在小鼠细胞中发现了与精神分裂症和自闭症谱系障碍相似的模式。在这三个基因中,有一个已经为人所知,但另外两个以前并不是科学界关注的焦点。普拉特研究小组的博士生、该研究的第一作者安东尼奥-桑蒂尼亚说:"如果我们知道疾病中哪些基因的活性异常,我们就可以尝试开发补偿这种异常的药物。"这种方法也适用于研究其他遗传疾病。桑蒂尼亚说:"在许多先天性疾病中,多个基因都在起作用,而不仅仅是一个。精神分裂症等精神疾病也是如此。现在,我们的技术可以让我们直接在完全生长的动物体内研究这类疾病及其遗传原因。每次实验修改的基因数量可以从目前的29个增加到几百个。"研究人员现在可以在活体生物中进行这些分析,这是一个很大的优势,因为细胞在培养过程中的行为与它们作为活体的一部分的行为是不同的。另一个优势是,科学家只需将AAV注射到动物的血液中即可。AAV有多种不同的功能特性。在这项研究中,研究人员使用了一种能进入动物大脑的病毒。根据要研究的内容,也可以使用针对其他器官的AAV。苏黎世联邦理工学院已经为这项技术申请了专利,现在,研究人员希望将其作为"肽"研究的一部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1385987.htm手机版:https://m.cnbeta.com.tw/view/1385987.htm

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止DNA损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了145个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和DNA损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过CRISPR筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质SIRT1得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(GabrielBalmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对SIRT1的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(DavidAdams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的145个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及DNA复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当SIRT1蛋白被抑制时,DNA损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为SMC3的蛋白质的化学水平实现的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419823.htm手机版:https://m.cnbeta.com.tw/view/1419823.htm

封面图片

开启健康长寿之门:科学家在细胞蛋白质中发现抗衰老功能

开启健康长寿之门:科学家在细胞蛋白质中发现抗衰老功能线粒体及其自身的DNA在细胞内产生能量,为生物功能提供动力,但这一过程中产生的有毒副产品会加速细胞衰老。Zuryn博士说:"在压力条件下,当线粒体DNA受损时,ATSF-1蛋白会优先进行修复,从而促进细胞健康和长寿。"他将这种关系比喻为需要进站的赛车。他说:"当线粒体需要修复时,ATSF-1就会发出细胞需要加油站的信号。"用红色和绿色荧光蛋白装饰神经系统中线粒体的活秀丽隐杆线虫"我们在秀丽隐杆线虫体内研究了ATFS-1,发现增强ATFS-1的功能可以促进细胞健康,这意味着这些蠕虫会变得更加灵活,寿命更长。它们并没有活得更长,但随着年龄的增长,它们变得更健康了。线粒体功能障碍是许多人类疾病的核心,包括痴呆症和帕金森氏症等常见的与年龄有关的疾病。""我们的发现可能会对健康老龄化和遗传性线粒体疾病患者产生令人兴奋的影响,了解细胞如何促进修复是确定预防线粒体损伤的可能干预措施的重要一步。我们的目标是通过了解恶化的线粒体是如何促成这一过程的,来延长衰老过程中通常会衰退的组织和器官功能。"展望未来,戴博士说:"我们最终可能会设计出干预措施,让线粒体DNA在更长的时间内保持健康,从而提高我们的生活质量。"这项研究发表在科学杂志《自然-细胞生物学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1378289.htm手机版:https://m.cnbeta.com.tw/view/1378289.htm

封面图片

科学家首次在皮肤外层发现血红蛋白 可帮助保护皮肤免受损伤

科学家首次在皮肤外层发现血红蛋白可帮助保护皮肤免受损伤研究人员很想知道表皮--皮肤的最外层--是如何保护我们免受紫外线照射等环境挑战的,因此他们从分子层面研究了皮肤中的情况。该研究的通讯作者MasayukiAmagai说:"表皮由角质化的分层鳞状上皮组成,主要由角质形成细胞构成。以前的研究发现,在角朊细胞分化和形成皮肤外层屏障的过程中,它们表达了多种具有保护功能的基因。然而,由于难以获得足够数量的分离终末分化的角质形成细胞来进行转录组分析,其他与屏障相关的基因逃脱了先前的保护"。表皮角质细胞起源于皮肤最深的一层(基底层),分化后向上移动形成数层。在角质细胞的分化阶段,已经发现了具有保护屏障功能的各种基因的表达,特应性皮炎等疾病就是由基因变异引起的。为了确定参与皮肤屏障机制的不明分子,研究人员分析了取自三个人的大腿和上臂的健康人皮肤的整个表皮和上表皮以及小鼠皮肤中的高表达基因。他们意外地发现,编码血红蛋白亚基之一的蛋白质α-球蛋白的HBA1/2基因在人类皮肤的上表皮中高度表达。同样,在小鼠皮肤中,Hba-a1/a2(相当于人类的HBA1/2)也在上表皮高度表达。Amagai说:"我们对整个表皮和上表皮进行了转录组比较分析,这两种表皮都是用酶从人类和小鼠皮肤中分离出来的细胞薄片。我们发现,负责产生血红蛋白的基因在表皮上部高度活跃。为了证实这一发现,我们使用免疫染色法来观察表皮上部角质细胞中血红蛋白α蛋白的存在。"研究人员将UVA和UVB分别照射皮肤,发现UVA(而非UVB)能诱导表皮角质细胞中HBA1/2的表达。UVA照射是活性氧(ROS)介导的角质形成细胞损伤的主要原因。与对照组相比,HBA基因敲除的角朊细胞细胞内ROS水平明显增加,这表明HBA的表达被诱导以抑制表皮角朊细胞中UVA诱导的ROS生成。线粒体--细胞的能量生产者--对紫外线辐射产生的过量ROS特别敏感,紫外线辐射引起的线粒体功能障碍直接导致皮肤损伤,也称为光老化。Amagai说:"我们的研究表明,表皮血红蛋白在氧化应激作用下上调,并能抑制人类角质细胞培养物中活性氧的产生。研究结果表明,血红蛋白α能保护角质形成细胞免受来自外部或内部的氧化应激,如紫外线辐射和线粒体功能受损。因此,角质形成细胞表达血红蛋白代表了一种防止皮肤老化和皮肤癌的内源性防御机制。"研究人员说,他们的发现为研究与ROS相关的皮肤疾病(如衰老和癌症)提供了重要的启示。该研究发表在《皮肤病学研究杂志》(JournalofInvestigativeDermatology)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1399297.htm手机版:https://m.cnbeta.com.tw/view/1399297.htm

封面图片

大脑的 "冷静药" - 科学家发现抑制焦虑的基因

大脑的"冷静药"-科学家发现抑制焦虑的基因一个国际科学家团队已经确定了大脑中驱动焦虑症状的一个基因。重要的是,对该基因的修改被证明可以降低焦虑水平,为焦虑症提供了一个令人兴奋的新的药物目标。这一发现由布里斯托尔大学和埃克塞特大学的研究人员领导,于4月25日发表在《自然通讯》杂志上。焦虑症很常见,每4个人中就有1人被诊断为焦虑症,在他们的一生中至少有一次焦虑症。严重的心理创伤会引发大脑杏仁核中神经元的遗传、生化和形态变化--杏仁核是牵涉到压力引起的焦虑的脑区,导致焦虑症的发作,包括恐慌症和创伤后应激障碍。然而,目前可用的抗焦虑药物的疗效很低,超过一半的患者在治疗后没有获得缓解。在开发强效抗焦虑药物方面取得的成功有限,这是由于我们对焦虑的神经回路和导致与压力有关的神经精神状态的分子事件了解不足。在这项研究中,科学家们试图确定大脑中支撑焦虑的分子事件。他们专注于一组分子,在动物模型中被称为miRNAs。这组重要的分子在人脑中也有发现,它能调节控制杏仁核中细胞过程的多种目标蛋白。在急性应激之后,该团队发现一种叫做miR483-5p的分子在小鼠杏仁核中的数量增加。重要的是,研究小组表明,增加的miR483-5p抑制了另一个基因Pgap2的表达,Pgap2反过来驱动了大脑中神经元形态的变化和与焦虑有关的行为。研究人员共同表明,miR-483-5p作为一个分子制动器,抵消了压力诱导的杏仁核变化,促进焦虑的缓解。发现一个新的杏仁核miR483-5p/Pgap2途径,大脑通过该途径调节对压力的反应,是发现新的、更有力的、急需的焦虑症治疗方法的第一块垫脚石,将加强这一途径。该研究的主要作者之一、布里斯托尔大学生理学、药理学和神经科学学院的MRC研究员和神经科学讲师ValentinaMosienko博士说:"压力可以触发一些神经精神疾病的发作,其根源在于遗传和环境因素的不利组合。虽然低水平的压力被大脑的自然调整能力所抵消,但严重或长期的创伤经历可以克服应激反应的保护机制,导致抑郁症或焦虑症等病症的发展。""miRNAs在战略上准备好控制复杂的神经精神疾病,如焦虑症。但是它们用来调节应激反应和易感性的分子和细胞机制直到现在还基本上是未知的。我们在这项研究中发现的miR483-5p/Pgap2途径,其激活发挥了减少焦虑的作用,为开发针对人类复杂精神疾病的抗焦虑疗法提供了巨大潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357589.htm手机版:https://m.cnbeta.com.tw/view/1357589.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人