剑桥研究人员发明可直接吸收空气中二氧化碳的新材料

剑桥研究人员发明可直接吸收空气中二氧化碳的新材料与目前的碳捕集方法相比,带电木炭海绵还可能更加节能,因为它需要更低的温度来去除捕集到的二氧化碳,以便将其储存起来。该研究成果发表在《自然》杂志上。领导这项研究的优素福-哈米德化学系亚历山大-福斯博士说:"从大气中捕捉碳排放是最后的手段,但考虑到气候紧急情况的规模,这是我们需要研究的问题。我们必须做的第一件也是最紧迫的事情是在全球范围内减少碳排放,但温室气体清除也被认为是实现净零排放和限制气候变化最坏影响所必需的。实事求是地说,我们必须竭尽全力"。直接空气捕集是一种潜在的碳捕集方法,它使用海绵状材料从大气中去除二氧化碳,但目前的方法成本高昂,需要高温和使用天然气,而且缺乏稳定性。福斯说:"在使用多孔材料从大气中捕集碳方面,已经开展了一些很有前景的工作。"我们想看看活性炭是否可以作为一种选择,因为它便宜、稳定,而且可以大规模制造。"活性炭被广泛应用于净水器等净化领域,但它通常无法捕捉和保持空气中的二氧化碳。福斯和他的同事提出,如果活性炭可以像电池一样充电,那么它就可以成为一种合适的碳捕获材料。给电池充电时,带电离子会进入电池的一个电极。研究人员假设,用氢氧化物这种化合物给活性炭充电,可以使其适用于碳捕获,因为氢氧化物会与二氧化碳形成可逆键。研究小组利用一种类似电池的充电过程,为一种廉价的活性炭布充入氢氧根离子。在这个过程中,炭布就像电池中的电极,氢氧根离子在炭的微孔中积聚。充电过程结束后,将木炭从"电池"中取出,清洗并烘干。对带电木炭海绵的测试表明,由于氢氧化物的结合机制,它可以成功地直接从空气中捕获二氧化碳。"这是一种利用类似电池的工艺制造材料的新方法,"福斯说。"二氧化碳捕获率已经与现有材料相当。但更有希望的是,这种方法的能源密集度要低得多,因为我们不需要高温来收集二氧化碳和再生木炭海绵。"为了从木炭中收集二氧化碳,使其得到净化和储存,需要对材料进行加热,以逆转氢氧化物-二氧化碳键。目前用于从空气中捕捉二氧化碳的大多数材料都需要加热到高达900°C的温度,通常需要使用天然气。然而,剑桥大学团队开发的带电木炭海绵只需要加热到90-100°C的温度,使用可再生电力即可达到这一温度。这种材料是通过电阻加热进行加热的,基本上是由内向外加热,因此过程更快,能耗更低。不过,这种材料也有局限性,研究人员目前正在努力解决这一问题。福斯说:"我们正在努力提高二氧化碳的捕获量,尤其是在潮湿的条件下,因为在潮湿的条件下,我们的性能会下降。"研究人员说,他们的方法可以用于碳捕获以外的领域,因为木炭中的孔隙和插入其中的离子可以进行微调,以捕获一系列分子。福斯说:"这种方法是我们在COVID-19大流行期间提出的一个疯狂想法,所以当这些想法真正奏效时,总是令人兴奋的。这打开了一扇门,可以用简单、节能的方式为不同应用制造各种材料。"编译来源:ScitechDailyDOI:10.1038/s41586-024-07449-2...PC版:https://www.cnbeta.com.tw/articles/soft/1434094.htm手机版:https://m.cnbeta.com.tw/view/1434094.htm

相关推荐

封面图片

新配方制造的混凝土吸收的二氧化碳要比排放的多

新配方制造的混凝土吸收的二氧化碳要比排放的多制造水泥的过程需要非常高的温度,这通常需要燃烧燃料,过程中当然会排放二氧化碳。这可以通过改用可再生能源来部分抵消,但混合物中的化学反应也会释放大量的二氧化碳,这就更难避免了。据估计,水泥生产占人类二氧化碳排放总量的8%之多。科学家们一直在调整配方,试图减少混凝土的碳足迹,用石灰石代替火山岩,或添加二氧化钛、建筑垃圾、小苏打或采矿过程中通常被丢弃的粘土等成分。其他团队甚至尝试使用微藻来种植所需的石灰石。在新的研究中,WSU的研究人员调查了一种涉及生物碳的新方法,生物碳是一种由有机废物制成的木炭。虽然生物炭以前曾被添加到水泥中,但这次研究小组首先使用混凝土冲洗废水对其进行处理。这提高了它的强度,并允许更高比例的添加剂被混合进去。但最重要的是,生物炭能够从它周围的空气中吸收多达其自身重量23%的二氧化碳。在实验中,研究小组制造了含有30%处理过的生物炭的水泥,并发现由此产生的混凝土是负碳的--它实际上吸收的二氧化碳比生产该材料时排放的二氧化碳还要多。根据研究人员的计算,1公斤(2.2磅)30%的生物碳混凝土比其生产过程中释放的二氧化碳多出约13克(-0.5盎司)。这听起来可能不多,但考虑到普通混凝土通常每1公斤材料要释放约0.9公斤(2磅)的二氧化碳,有着鲜明的差异。研究人员李志鹏和史贤明与新型负碳混凝土的样品图/华盛顿州立大学研究小组说,如果在他们的分析中考虑到下游的差异,总收益可能会更好。例如,将生物炭用于像这种混凝土这样的环保目的,可以将其制成的生物质从可能释放更多二氧化碳的其他命运中转移出来。此外,新的混凝土预计将在其几十年的工作寿命中继续吸收二氧化碳。重要的是,生物炭混凝土还能保持其强度。当28天后测量时,混凝土的抗压强度为27.6兆帕(4,003磅/平方英寸),与普通混凝土差不多。研究人员计划继续优化和扩大该方法,并测试所产生的混凝土的抗风化和其他类型的损害的程度。该研究发表在《材料通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1355635.htm手机版:https://m.cnbeta.com.tw/view/1355635.htm

封面图片

释放粘土的力量:它可以是捕获空气中二氧化碳的关键吗?

释放粘土的力量:它可以是捕获空气中二氧化碳的关键吗?桑迪亚国家实验室的生物工程师SusanRempe(左)和化学工程师TuanHo通过一种粘土的化学结构的艺术表现进行观察。他们的团队正在研究如何利用粘土来捕获二氧化碳。资料来源:克雷格-弗里茨/桑迪亚国家实验室照片在桑迪亚化学工程师TuanHo的领导下,该团队一直在使用强大的计算机模型,结合实验室实验,研究一种粘土如何吸收和储存二氧化碳。科学家们在本周早些时候发表在《物理化学快报》上的一篇论文中分享了他们的初步发现。该论文的主要作者Ho说:"这些基本发现有可能用于直接空气捕集;这就是我们正在努力的方向。粘土真的很便宜,而且在自然界中很丰富。如果这个高风险、高回报的项目最终产生了一项技术,这应该使我们能够大大降低直接空气碳捕获的成本。"为什么要捕获碳?碳捕获和封存是指从地球大气层中捕获多余的二氧化碳并将其储存在地下深处的过程,目的是减少气候变化的影响,如更频繁的严重风暴、海平面上升以及干旱和野火增加。这种二氧化碳可以从燃烧化石燃料的发电厂或其他工业设施(如水泥窑),或直接从空气中捕获,这在技术上更具挑战性。碳捕集和封存被广泛认为是正在考虑用于气候干预的最没有争议的技术之一。桑迪亚生物工程师和该项目的高级科学家SusanRempe说:"我们想要低成本的能源,而不破坏环境。我们可以以一种不产生那么多二氧化碳的方式生活,但我们不能控制我们的邻居做什么。直接空气碳捕获对于减少空气中的二氧化碳数量和减轻我们邻居释放的二氧化碳非常重要。"Ho想象,基于粘土的设备可以像海绵一样用来吸收二氧化碳,然后二氧化碳可以从海绵中"挤"出来并被抽到地下深处。或者粘土可以更像一个过滤器,从空气中捕捉二氧化碳进行储存。除了便宜和广泛使用之外,粘土还很稳定,并且有很高的表面积--它由许多微小的颗粒组成,而这些颗粒又有比人类头发直径小十万倍的裂缝和缝隙。Rempe说,这些微小的空腔被称为纳米孔,化学性质可以在这些纳米级的孔隙中发生变化。这并不是Rempe第一次研究用于捕获二氧化碳的纳米结构材料。事实上,她是一个研究将二氧化碳转化为水稳定的碳酸氢盐的生物催化剂的团队的成员,该团队定制了一个极薄的纳米结构的膜来保护生物催化剂,并为他们受生物启发的碳捕捉膜获得了专利。当然,这种膜不是用廉价的粘土制成的,最初是为了在燃烧化石燃料的发电厂或其他工业设施中发挥作用,Rempe说。"这是同一个问题的两个互补的可能解决方案,"她说。如何模拟纳米尺度?分子动力学是一种计算机模拟,研究原子和分子在纳米级的运动和相互作用。通过观察这些相互作用,科学家可以计算出一个分子在特定环境中的稳定性--例如在充满水的粘土纳米孔中。"分子模拟确实是研究分子尺度上的相互作用的有力工具,"Ho说。"它使我们能够充分了解二氧化碳、水和粘土之间发生了什么,目标是利用这些信息来设计一种粘土材料,用于碳捕捉应用。"在这种情况下,分子动力学模拟表明,二氧化碳在潮湿的粘土纳米孔中可以比在普通水中更稳定。这是因为水里的原子不能均匀地分享它们的电子,使得一端略带正电,另一端略带负电。另一方面,二氧化碳中的原子确实均匀地分享它们的电子,就像油与水混合一样,二氧化碳在类似的分子附近更稳定,例如粘土的硅氧区域。由CliffJohnston教授领导的普渡大学的合作者最近用实验证实,限制在粘土纳米孔中的水比普通水吸收更多的二氧化碳。桑迪亚博士后研究员NabankurDasgupta也发现,在纳米孔的油状区域内,将二氧化碳转化为碳酸所需的能量较少,与普通水的相同转化相比,使反应更有利,Ho补充说,通过使这种转换变得有利并需要更少的能量,最终粘土纳米孔的油状区域使其有可能捕获更多的二氧化碳并更容易地储存它。"到目前为止,这告诉我们粘土是一种捕捉二氧化碳并将其转化为另一种分子的好材料,"Rempe说。"而且我们了解了这是为什么,这样合成人员和工程师就可以修改材料,以增强类似油的表面化学性质。模拟也可以指导实验,以测试关于如何促进二氧化碳转化为其他有价值分子的新假设"。该项目的下一步将是利用分子动力学模拟和实验来弄清如何将二氧化碳重新从纳米孔中取出。在三年项目结束时,他们计划构想出一个基于粘土的直接空气碳捕获装置。...PC版:https://www.cnbeta.com.tw/articles/soft/1346445.htm手机版:https://m.cnbeta.com.tw/view/1346445.htm

封面图片

中国首个海上二氧化碳封存示范工程项目投用

中国首个海上二氧化碳封存示范工程项目投用中国首个海上二氧化碳封存(CCS)示范工程项目在南中国海东部海域正式投用,开始规模化向海底地层注入二氧化碳。据财新网报道,中国海油集团星期四(6月1日)宣布上述信息。CCS是碳捕集、利用与封存(CCUS)技术中的一种,即把二氧化碳从发电、化工、炼钢等过程中分离出来,直接注入咸水层、枯竭油气层、煤床、盐床等地质体中,从而封存二氧化碳的过程。上述项目是为了封存伴随恩平15-1海上原油生产平台开采石油产生的二氧化碳。报道称,恩平15-1平台是亚洲最大的海上原油生产平台,所在油田群高峰日产原油超过7000吨,油田伴生气的二氧化碳含量达95%,若二氧化碳随原油一起被开采,不仅将增加二氧化碳排放量,还会腐蚀海上平台设施和海底管线。该项目目标是实现“岸碳入海”,即捕集陆上排放的二氧化碳,通过罐车、管道、船舶等方式输送到海洋中利用或封存。中国海油介绍,中国南部及沿海地区二氧化碳排放量高,但这些地区陆域沉积盆地面积小、分布零散,不适宜封存;而海洋碳封存具有不占用土地、远离蓄水层、海水层阻隔等优势。

封面图片

蓝藻中关键酶可 “吞噬” 二氧化碳

蓝藻中关键酶可“吞噬”二氧化碳科学家发现了一种“隐藏在大自然蓝图中”的可“吞噬”二氧化碳的关键酶。这一发现由澳大利亚国立大学和英国纽卡斯尔大学的科学家共同完成。蓝藻拥有名为二氧化碳浓缩机制(CCM)的系统,能固定大气中的碳,并以比一般植物和农作物快得多的速度将其转化为糖。研究人员表示,设计更高效捕获和利用二氧化碳的作物,将极大地提高作物产量,同时减少对氮肥和灌溉系统的需求,还能增强世界粮食系统对气候变化的抵御能力。(科技日报)

封面图片

中国将首次开启海上二氧化碳封存

中国将首次开启海上二氧化碳封存中海油表示,这口井将建立起二氧化碳回注地层的“绿色通道”,预计每年可封存二氧化碳30万吨,累计封存二氧化碳150万吨以上,相当于植树近1400万棵,或停开近100万辆轿车。中国海油深圳分公司副总经理兼总工程师郭永宾表示,这口海上二氧化碳封存回注井完全由中国自主设计实施,标志着中国初步形成海上二氧化碳注入、封存和监测的全套钻完井技术和装备体系,填补了海上二氧化碳封存技术的空白。恩平15-1油田位于深圳西南约200公里的南海东部海域,平均水深约90米,是中国南海首个高含二氧化碳油田。经过一系列关键技术研究,中海油最终确定将二氧化碳封存在距离恩平15-1平台约3公里处的“穹顶”式地质构造中。该种地质构造类似一个倒扣在地底下的“巨碗”,具有自然封闭性,能够长期稳定地罩住二氧化碳。据悉,二氧化碳捕集、利用与封存技术(CCUS),是世界公认的具有巨大商业化应用潜力的碳减排技术之一。而在此之前,中国二氧化碳封存项目多为陆地封存。...PC版:https://www.cnbeta.com.tw/articles/soft/1350349.htm手机版:https://m.cnbeta.com.tw/view/1350349.htm

封面图片

剑桥科学家发明太阳能反应堆 可将塑料垃圾和二氧化碳转化为有用化学品

剑桥科学家发明太阳能反应堆可将塑料垃圾和二氧化碳转化为有用化学品就在六个月前,剑桥团队公布了他们的太阳能反应堆的一个版本。它由两个腔室组成,一个处理二氧化碳,另一个处理塑料垃圾,整个装置由钙钛矿太阳能电池供电。然而,该版本仅适用于来自钢瓶的浓缩二氧化碳,这可用作概念证明,但不一定适用于现实世界的设置。因此,对于新版本,该团队对其进行了调整,以处理烟气中的二氧化碳,甚至是环境空气中的二氧化碳。首先,空气被泵送通过碱性溶液,该溶液仅捕获二氧化碳,同时允许氧气和氮气等其他气体以气泡形式逸出。然后可以在另一个腔室的帮助下处理提纯的二氧化碳。“塑料成分是这个系统的一个重要技巧,”该研究的共同第一作者MotiarRahaman博士说。“从空气中捕获和使用二氧化碳会使化学反应变得更加困难。但是,如果我们将塑料废物添加到系统中,塑料就会向CO2提供电子。塑料分解为广泛用于化妆品行业的乙醇酸,二氧化碳转化为合成气,这是一种简单的燃料。”该团队表示,这项技术可以大大有助于解决这两种主要的环境危害,并最终有助于为实现无化石燃料的未来铺平道路。“我们不仅对脱碳感兴趣,而且对去化石化感兴趣——我们需要完全消除化石燃料,以创造真正的循环经济,”该研究的第一作者ErwinReisner教授说。“从中期来看,这项技术可以通过从工业中捕获碳并将其转化为有用的东西来帮助减少碳排放,但最终,我们需要将化石燃料完全排除在外,并从空气中捕获二氧化碳。”该研究发表在《焦耳》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366585.htm手机版:https://m.cnbeta.com.tw/view/1366585.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人