斯坦福大学推出改变游戏规则的电网储能液体燃料技术

斯坦福大学推出改变游戏规则的电网储能液体燃料技术斯坦福大学的科学家们正在开发新的异丙醇生产催化系统,以优化能量的保持和释放,从而改进液体燃料的储存方法。随着加州向可再生燃料的快速转型,它需要能够为电网储存电力的新技术。太阳能发电量在夜间和冬季都会下降。风能则时好时坏。因此,该州在很大程度上依赖天然气来平抑可再生能源电力的高低起伏。人文与科学学院罗伯特-埃克斯-斯温(RobertEcklesSwain)化学教授罗伯特-韦茅斯(RobertWaymouth)说:"电网使用能源的速度与你产生能源的速度相同,如果你当时没有使用它,而你又无法储存它,就必须把它扔掉。"韦茅斯正带领斯坦福大学的一个团队探索一种新兴的可再生能源储存技术:液态有机氢载体(LOHCs)。氢气已被用作燃料或发电手段,但氢气的储存和运输却非常棘手。"我们正在开发一种在液体燃料中选择性转换和长期储存电能的新策略,"《美国化学学会杂志》上详细介绍这项工作的研究报告的资深作者韦茅斯说。"我们还发现了一种新型的选择性催化系统,可以在不产生气态氢的情况下将电能储存在液体燃料中"。液体电池用于为电网储存电力的电池,以及智能手机和电动汽车电池都使用锂离子技术。由于储能规模巨大,研究人员仍在继续寻找能够补充这些技术的系统。这些候选物质中包括低浓度氢氧化物,它可以利用催化剂和高温储存和释放氢气。有朝一日,LOHC可以广泛发挥"液体电池"的功能,储存能量并在需要时高效地将其作为可用燃料或电力返回。韦茅斯团队研究将异丙醇和丙酮作为氢能储存和释放系统的成分。异丙醇(或称擦拭用酒精)是一种高密度液态氢,可以通过现有基础设施储存或运输,直到将其用作燃料电池的燃料,或在不排放二氧化碳的情况下释放氢气以供使用。然而,用电生产异丙醇的方法效率很低。水的两个质子和两个电子可以转化为氢气,然后催化剂可以用氢气生产异丙醇。韦茅斯说:"但在这个过程中,你并不想要氢气。它的单位体积能量密度很低。我们需要一种方法,在不产生氢气的情况下,直接用质子和电子制造异丙醇。"这项研究的第一作者丹尼尔-马龙(DanielMarron)最近刚刚完成了斯坦福大学的化学博士学位,他确定了如何解决这个问题。他开发了一种催化剂系统,可将两个质子和两个电子与丙酮结合,从而选择性地生成LOHC异丙醇,而不会产生氢气。他使用铱作为催化剂实现了这一目的。一个关键的惊喜是,二茂钴是一种神奇的添加剂。二茂钴是一种非贵金属钴的化合物,长期以来一直被用作简单的还原剂,而且价格相对低廉。研究人员发现,在这一反应中,二茂钴作为助催化剂的效率非同一般,它能直接向铱催化剂提供质子和电子,而不是像之前预期的那样释放出氢气。根本的未来钴已经是电池中的一种常见材料,需求量很大,因此斯坦福大学的研究小组希望他们对二茂钴特性的新认识能够帮助科学家们为这一过程开发其他催化剂。例如,研究人员正在探索更为丰富的非贵重地球金属催化剂,如铁,以使未来的LOHC系统更加经济实惠和可扩展。韦茅斯说:"这是基础科学,但我们认为我们已经找到了一种新策略,可以更有选择性地将电能储存在液体燃料中。"随着这项工作的发展,人们希望LOHC系统能够改善工业和能源行业或单个太阳能或风能农场的能源存储。尽管幕后工作复杂而具有挑战性,但正如韦茅斯所总结的那样,这个过程实际上非常优雅:"当拥有有多余的能量,而电网又没有需求时,就它储存起来。当需要这些能量时,就可以将其作为电能返回。"编译来源:ScitechDailyDOI:10.1021/jacs.4c02177...PC版:https://www.cnbeta.com.tw/articles/soft/1435124.htm手机版:https://m.cnbeta.com.tw/view/1435124.htm

相关推荐

封面图片

廉价高效的新型催化剂可改变可再生能源的储存方式

廉价高效的新型催化剂可改变可再生能源的储存方式由香港城市大学开发、伦敦帝国理工学院测试的一种利用单个铂原子的新型催化剂,有望更方便、更经济地利用可再生能源储存氢气。这项创新将铂原子分散在硫化钼上,减少了铂的用量,提高了电解效率。共同作者、帝国理工学院化学系的AnthonyKucernak教授说:"《英国氢战略》提出了到2030年低碳氢生产能力达到10GW的宏伟目标。为了实现这一目标,我们需要提高廉价、易于生产和高效储氢的产量。新型电催化剂可以为此做出重大贡献,最终帮助英国实现到2050年净零排放的目标。"风能和太阳能等可再生能源发电量正在迅速增长。然而,所产生的部分能源需要储存起来,以便在天气条件不利于风能和太阳能时使用。一个很有前景的方法就是以氢气的形式储存能源,氢气可以储存和运输,以供日后使用。新型催化剂材料资料来源:香港城市大学为此,可再生能源被用来将水分子分裂成氢和氧,能量储存在氢原子中。这需要使用铂催化剂来刺激水分子的分裂反应,也就是所谓的电解。然而,虽然铂是这种反应的极佳催化剂,但它既昂贵又稀有,因此尽量减少铂的使用对于降低系统成本和限制铂的提取非常重要。现在,在最近发表于《自然》(Nature)的一项研究中,研究小组设计并测试了一种催化剂,这种催化剂使用尽可能少的铂,从而产生了一种高效但成本效益高的水分离平台。首席研究员、香港城市大学张华教授说:"电催化水分裂产生的氢被认为是在不久的将来最有希望取代化石燃料的清洁能源之一,可减少环境污染和温室效应。"测试工具该团队的创新涉及在硫化钼(MoS2)薄片中分散单原子铂。这比现有催化剂使用的铂要少得多,甚至还能提高性能,因为铂与钼相互作用,提高了反应的效率。在纳米片支撑物上生长薄催化剂,使城大团队能够制造出高纯度的材料。随后,帝国理工大学的库切纳克教授实验室对这些材料进行了表征,并开发了确定催化剂如何工作的方法和模型。帝国理工大学的团队拥有进行严格测试的工具,因为他们已经开发出了几种专门用于使用这种催化剂的技术。库切纳克教授及其同事已经在这些技术的基础上成立了几家公司,其中包括专门从事氢流电池研发的RFCPower公司。使用氢气一旦可再生能源以氢的形式储存起来,要想再次将其用作电力,就需要使用燃料电池进行转换,因为燃料电池在氧分裂反应中会产生水蒸气作为副产品。最近,库切纳克教授及其同事发现了一种用于该反应的单原子催化剂,这种催化剂以铁而不是铂为基础,这也将降低这项技术的成本。库切纳克教授领导的另一家分拆公司布兰布尔能源公司(BrambleEnergy)将在其燃料电池中测试这项技术。因此,这两种单原子催化剂--一种帮助将可再生能源转化为氢储存起来,另一种帮助将这些能量在以后以电力形式释放出来--都有能力让氢经济更接近现实。...PC版:https://www.cnbeta.com.tw/articles/soft/1385599.htm手机版:https://m.cnbeta.com.tw/view/1385599.htm

封面图片

从水中提取清洁燃料 - 一种突破性的低成本催化剂被发明出来

从水中提取清洁燃料-一种突破性的低成本催化剂被发明出来由美国能源部(DOE)阿贡国家实验室(ArgonneNationalLaboratory)领导的一个多机构团队开发出了一种低成本催化剂,用于从水中产生清洁氢气的过程。其他贡献者包括能源部的桑迪亚国家实验室、劳伦斯伯克利国家实验室以及Giner公司。阿贡高级化学家Di-JiaLiu说:"一种名为电解的工艺可以从水中产生氢气和氧气,这种工艺已经存在了一个多世纪。"他还在芝加哥大学普利兹克分子工程学院担任联合职务。质子交换膜(PEM)电解器代表了这一过程的新一代技术。它们能在接近室温的条件下以更高的效率将水分离成氢和氧。能源需求的减少使其成为利用太阳能和风能等可再生但间歇性能源生产清洁氢气的理想选择。高级化学家Di-JiaLiu在管式炉内检查热处理后的催化剂样品,博士后ChenzhaoLi正在搬运用于催化剂合成的压力反应器。图片来源:阿贡国家实验室这种电解器的每个电极(阴极和阳极)都使用不同的催化剂。阴极催化剂产生氢气,而阳极催化剂形成氧气。问题在于阳极催化剂使用的是铱,而铱目前的市场价格约为每盎司5000美元。铱的供应不足和高昂的成本成为PEM电解槽广泛应用的主要障碍。新催化剂的主要成分是钴,其价格比铱便宜得多。Liu说:"我们试图在PEM电解槽中开发一种低成本阳极催化剂,这种催化剂能以高产能产生氢气,同时能耗极低。通过使用我们的方法制备的钴基催化剂,可以消除在电解槽中生产清洁氢气的主要成本瓶颈。Giner公司是一家致力于电解槽和燃料电池商业化的领先研发公司,该公司利用其PEM电解槽测试站在工业运行条件下对新型催化剂进行了评估。其性能和耐用性远远超过了竞争对手的催化剂。要进一步提高催化剂的性能,重要的是了解电解槽运行条件下原子尺度的反应机制。研究小组利用阿贡高级光子源(APS)的X射线分析,破解了催化剂在工作条件下发生的关键结构变化。他们还在桑迪亚实验室和阿贡纳米材料中心(CNM)使用电子显微镜确定了催化剂的关键特征。APS和CNM都是能源部科学办公室的用户设施。阿贡材料科学家文建国说:"我们对新催化剂在不同制备阶段的表面原子结构进行了成像。此外,伯克利实验室的计算建模揭示了催化剂在反应条件下的耐久性的重要见解。该团队的成就是能源部氢能源地球射击计划(HydrogenEnergyEarthshotinitiative)向前迈出的一步,该计划模仿了20世纪60年代美国太空计划的"月球射击"(MoonShot)。该计划的宏伟目标是在十年内将绿色氢气的生产成本降至每公斤一美元。以这样的成本生产绿色氢气可以重塑国家经济。其应用领域包括电网、制造、运输以及住宅和商业供暖。Liu指出:"更广泛地说,我们的研究成果为用成本更低、资源更丰富的元素取代昂贵的贵金属催化剂开辟了一条充满希望的道路"。...PC版:https://www.cnbeta.com.tw/articles/soft/1372121.htm手机版:https://m.cnbeta.com.tw/view/1372121.htm

封面图片

太阳能"人造叶"利用阳光生产出清洁的、可用于汽车的液体燃料

太阳能"人造叶"利用阳光生产出清洁的、可用于汽车的液体燃料来自剑桥大学的研究人员利用光合作用的力量,将二氧化碳、水和阳光在一个步骤中转化为多碳燃料--乙醇和丙醇。这些燃料具有很高的能量密度,可以很容易地储存或运输。与化石燃料不同,这些太阳能燃料产生净零碳排放,而且完全可再生,与大多数生物乙醇不同,它们不会从粮食生产中转移任何农业用地。虽然该技术仍处于实验室规模,但研究人员表示,他们的"人造树叶"是向基于化石燃料的经济过渡的重要一步。该结果在《自然-能源》杂志上刊出。生物乙醇被认为是汽油的清洁替代品,因为它是由植物而不是化石燃料制成的。今天在道路上行驶的大多数汽车和卡车都使用含有高达10%乙醇的汽油(E10燃料)。美国是世界上最大的生物乙醇生产国:根据美国农业部的数据,美国种植的所有玉米中几乎有45%被用于生产乙醇。领导这项研究的ErwinReisner教授说:"像乙醇这样的生物燃料是一项有争议的技术,主要是因为它们占用了本可以用来种植粮食的农业用地。"带有人造叶子的光反应器在太阳照射下工作几年来,位于优素福-哈米德化学系的赖斯纳研究小组一直在开发可持续的零碳燃料,其灵感来自于光合作用--植物将阳光转化为食物的过程--利用人造叶子。到目前为止,这些人造叶子只能制造简单的化学品,如合成气,一种氢气和一氧化碳的混合物,用于生产燃料、药品、塑料和肥料。但是为了使该技术更加实用,它需要能够在单一太阳能供电的步骤中直接生产更复杂的化学品。现在,这种人造叶子可以直接生产清洁的乙醇和丙醇,而不需要生产合成气的中间步骤。研究人员开发了一种基于铜和钯的催化剂。该催化剂经过优化,允许人造叶子生产更复杂的化学品,特别是多碳醇的乙醇和正丙醇。这两种醇都是高能量密度的燃料,可以轻松运输和储存。其他科学家已经能够利用电力生产类似的化学品,但这是第一次只利用太阳的能量用人造叶子生产如此复杂的化学品。论文的第一作者MotiarRahaman博士说:"将阳光照射在人造叶子上,并从二氧化碳和水中获得液体燃料,这是一个令人惊讶的化学过程。通常情况下,当你试图使用人造叶子装置将二氧化碳转化为另一种化学产品时,你几乎总是是得到一氧化碳或合成气,但在这里,我们已经能够仅仅使用太阳的力量来生产一种实用的液体燃料。这是一个令人兴奋的进步,为我们的工作开辟了全新的途径。"目前,该装置是一个概念验证,只显示出适度的效率。研究人员正在努力优化光吸收器,以便它们能够更好地吸收太阳光,并优化催化剂,以便它能够将更多的太阳光转化为燃料。还需要进一步的工作,使该装置可以扩展,以便它可以生产大量的燃料。"即使仍有工作要做,我们已经展示了这些人造叶子的能力,"Reisner说。"重要的是表明我们可以超越最简单的分子,制造出在我们过渡到远离化石燃料时直接有用的东西。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360459.htm手机版:https://m.cnbeta.com.tw/view/1360459.htm

封面图片

只需加水:斯坦福大学的研究人员发现了一种简单而环保的方法来制造氨气

只需加水:斯坦福大学的研究人员发现了一种简单而环保的方法来制造氨气然而,哈伯-波什工艺是极其能源密集型的,需要80-300个大气压的高压水平和572-1000华氏度(300-500摄氏度)的温度来打破氮的强键。此外,该过程中涉及的天然气蒸汽处理极大地促进了二氧化碳的释放,而二氧化碳是导致气候变化的一个关键因素。氨是一种无色的刺鼻气体,化学式为NH3。它是一种天然存在的化合物,在氮气循环中发挥着重要作用,并被用作生产化肥、塑料和其他化学品的组成部分。它还被用作制冷剂和清洗剂。总而言之,为了满足目前全球每年1.5亿公吨的氨气需求,哈伯-博世工艺占用了全球2%以上的能源,并占排放到大气中的二氧化碳的约1%。相比之下,斯坦福大学研究人员首次提出的创新方法需要的专门环境较少。该研究的高级作者、斯坦福大学人文与科学学院自然科学MargueriteBlakeWilbur教授和化学教授RichardZare说:"我们震惊地看到,我们可以在良性的、日常的温度和压力环境中,只用空气和水,使用像喷雾器这样基本的东西来产生氨。如果这个过程可以扩大规模,它将代表一种生态友好的制造氨的新方法,这是世界上最重要的化学过程之一"。这种新方法还使用很少的能源,而且成本很低,因此为可能以可持续的方式生产这种有价值的化学品指出了一条道路。斯坦福大学化学博士后学者XiaoweiSong是这项研究的主要作者,该研究最近发表在《美国国家科学院院刊》上。所发现的新化学是沿着Zare实验室近年来研究长期被忽视的、令人惊讶的水微滴的高反应性的开创性工作的脚步进行的。在2019年的一项研究中,Zare及其同事创造性地证明了腐蚀性的过氧化氢在与表面接触的微滴中自发形成。此后的实验证实了电荷在液体和固体材料之间跳跃并产生分子碎片的机制,即所谓的活性氧物种。基于这些发现,Song和Zare开始与研究的共同作者BasheerChanbasha合作,他是沙特阿拉伯法赫德国王石油和矿业大学的化学教授。Chanbasha专门研究用于能源、石油化工和环境的纳米材料,去年夏天作为访问学者来到斯坦福。研究小组将目光锁定在一种催化剂上--该术语指的是能够提高化学反应速度但本身不会被反应降解或改变的任何物质--他们怀疑这种催化剂能够帮助开辟一条通往氨的化学途径。这种催化剂由一种叫做磁铁矿的氧化铁和一种在20世纪60年代发明的合成膜组成,这种合成膜由两个大分子的重复链组成。研究人员将催化剂应用于石墨网,Song将其纳入一个气体动力喷雾器。喷雾器喷射出微滴,其中泵送的水(H2O)和压缩的分子氮(N2)在催化剂的存在下一起反应。通过使用一种叫做质谱仪的设备,Song分析了微液滴的特性,并在收集的数据中看到了氨的特征。Zare及其同事对这一结果非常满意,特别是考虑到这一相对低技术的方法。Zare说:"我们的方法不需要应用任何电压或辐射形式。从更广泛的化学角度来看,该方法的非凡之处在于它使用了物质的三个阶段:作为气体的氮,作为液体的水,以及作为固体的催化剂。据我们所知,同时使用气体、液体和固体来引起化学转化的想法是首创的,对推动其他化学转化有巨大的潜力。"虽然很有希望,但Zare、Song和Chanbasha所揭示的氨气生产方法目前还只是处于示范阶段。研究人员计划探索如何浓缩所生产的氨,以及衡量该工艺如何能够潜在地扩大到商业上可行的水平。虽然哈伯-博世公司只有在巨大的设施中才是有效的,但新的制氨方法可以是便携式的,在现场甚至在农场按需进行。反过来,这将减少与从遥远的工厂运输氨有关的温室气体排放。Zare说:"随着进一步的发展,我们希望我们的合成氨生产方法可以帮助解决两大迫在眉睫的问题,即继续为地球上不断增长的数十亿人口提供食物,同时仍然缓解气候变化。我们对继续这一研究方向充满了希望和兴奋"。...PC版:https://www.cnbeta.com.tw/articles/soft/1357377.htm手机版:https://m.cnbeta.com.tw/view/1357377.htm

封面图片

革命性的光催化剂有望让氨成为一种清洁燃料

革命性的光催化剂有望让氨成为一种清洁燃料氢气是一种非常有前途的清洁燃料,可以燃烧,或通过燃料电池直接转化为电能。然而,它既昂贵又难以处理,因为它是一种超轻的气体,需要压缩到700个大气压,或者在绝对零度以内低温冷却以达到其液体状态。氨是著名的比氢气本身更好的氢气载体;它的每个氮原子都与三个氢原子结合,虽然它具有腐蚀性,在高浓度下极其危险,但它在大气温度和压力下又是一种稳定的液体,它在许多行业的广泛使用意味着人们在各种条件下有大量的安全处理经验。如前所述,氨携带氢气的能力非常强,但如果你想使用这些氢气,则需要"破解"它,把氢气弄出来,再把无害的氮气释放回大气中。这有两个主要难点:首先,裂解反应是需要耗费能源的,所以大多数氨裂解是在大型设施中进行的,操作温度至少为650-1000℃(1200-1800°F)。其次,裂解操作所需的热催化剂通常是铂族金属,如钌--相对稀有和昂贵。随着绿色氢气运动作为向清洁能源过渡的一个关键支柱而不断升温,你可以看到为什么莱斯大学的团队对发现一种紧凑和高效的方式来催化室温下的这种裂解反应感到兴奋,因为它只使用铜和铁。该团队的"天线-反应器"光催化剂通过嵌入"反应器"催化剂中的小型"天线"粒子收集光线,从而为其提供催化各种化学反应所需的能量这个团队花费了30多年开发了其"天线-反应器"质子光催化剂。这些是催化剂的纳米颗粒,点缀着小块的"天线"材料,旨在增加催化剂吸收光线的能力。经过适当的调整,这些反应粒子从环境光中吸收能量--无论是太阳光,还是来自低能量LED的光--并踢出短命的"热电子",其能量足以启动有效的化学反应,即使在环境温度下也是如此。天线-反应器光催化剂可以被设计用于各种反应。例如,我们几周前写过的光能硫化氢转化为氢气的催化剂,其背后是同一个团队,基本上也是同一个基本想法。那个催化剂使用二氧化硅作为"反应器",用微小的金颗粒作为"天线"从光中吸收能量。这种氨裂解光催化剂使用铁作为其反应器,铜作为其光收集天线--这两种金属都很便宜和丰富,与今天使用的典型铜钌热催化剂不同。据莱斯大学校友和研究报告的共同作者HosseinRobatjazi称,在实验室测试中,"在照明下,铜-铁显示出与铜-钌相似的效率和反应性,并可与之相媲美"。在最初的实验室测试中使用的小型激光动力电池(左)与Syzygy的更大的激光动力测试设备SyzygyPlasmonics的对比最初的测试是在一个很小的实验装置中使用激光器提供的光进行的。但是研究报告的合著者NaomiHalas也是SyzygyPlasmonics公司的联合创始人,这是一家资金雄厚的公司,旨在将莱斯团队的工作商业化,Syzygy公司能够授权这种特殊的催化剂,并建立一个大约500倍大的测试设备,使用高效的LED照明代替激光。催化剂仍然是一样的高效。团队发表的科学文献中的第一份报告表明用LED的光催化作用可以从氨中生产出克级数量的氢气。这为在等离子体光催化中完全取代贵金属打开了大门,这个过程也会在不需要热量的情况下进行,所以也会节省能源和减少排放。也许最重要的是,这看起来将带来一台小型、可靠、轻量级和冷却的氨裂解装置,而不是在数百度的高温下运行。它不需要建造大型设施来运作。Syzygy说,其最初的Rigel光催化反应器产品大约有一台小型洗衣机那么大,每天处理大约一吨,这取决于它所运行的具体反应。这些反应器可以堆叠起来;如果需要更大的产量,可以同时运行一堆反应器。Syzygy的Rigel光催化反应器与洗衣机差不多大小(右)也许可以在一艘电动货船上安装一组这样的反应器,在需要的地方将容易储存的氨气转化为容易使用的氢气。这本身可能是绝对革命性的,从根本上提高了清洁货运和客运的范围。也许这个概念可能被证明足够小和轻,与航空业有关,在航空业,储存在氨中的氢气的能量密度可以开辟出化石燃料无法达到的航线。也许它最终会小到足以塞进你可以在加油站加满氨气的电动汽车。而这只是这种特殊的光催化剂;莱斯和Syzygy团队当然不会就此罢休。事实上,该公司的目标是在任何可能的地方让热催化剂失去工作。"鉴于其大幅减少化工行业碳排放的潜力,质子天线-反应器光催化剂值得进一步研究,"另一位合著者EmilyCarter补充说。"这些结果是一个很大的动力。他们表明,其他丰富的金属组合有可能被用作广泛的化学反应的成本效益催化剂"。一个早期的钯/铝催化剂的细节显示。彩色的电子光谱图显示了"钯岛周围单个质子模式的空间分布。这些质子模式负责捕捉光能并将其转移到催化剂颗粒上。"莱斯大学"催化是化学工业的基础,"另一位合著者和Syzygy公司联合创始人彼得-诺德兰德(PeterNordlander)说,"它是所有社会中最耗能的部分之一。这项工作表明,基于LED的化学实际上是可行的,而且是可以大规模进行的。它可以为工业规模的化学和工业上重要的反应做出贡献。"Syzygy表示,它已经在现场试验中得到了这种反应,并预计在2023年将这些光催化氨裂解反应器投入商业使用。这是一些非常激动人心的技术,在一系列行业中具有巨大的潜力,并为脱碳做出贡献。...PC版:https://www.cnbeta.com.tw/articles/soft/1333929.htm手机版:https://m.cnbeta.com.tw/view/1333929.htm

封面图片

酝酿数十年:新催化剂将可使氢气燃料电池变得经济实惠

酝酿数十年:新催化剂将可使氢气燃料电池变得经济实惠几十年来,生态友好燃料的商业化一直因铂金的高成本而停滞不前,但一项研究表明,低成本的催化剂可能是一种可行的替代品。多年来,研究人员一直在寻找一种能大大降低生产氢气燃料电池价格的催化剂。这样的突破可以带来一场绿色能源革命,笔记本电脑和火车都可以使用只产生水作为副产品的燃料。资料图根据水牛城大学(UB)最近的研究结果,研究人员可能越来越接近于实现这一目标。目前,美国能源部(DOE)已经将效率、耐久性和可负担性确定为燃料电池研究的三个主要目标。在最近发表在《NatureEnergy》上的一项研究中,科学家们解释了铁是如何跟氮和碳结合在一以产生一种满足所有三个标准的催化剂。该研究的论文第一作者、UB工程和应用科学学院化学和生物工程教授GangWu说道:“这已经酝酿了多年。我们相信这是一个重大的突破,进而最终将有助于释放氢燃料电池的巨大潜力。”燃料电池的前景根据美DOE的说法,燃料电池的操作跟电池类似但不会失去动力或需要充电。只要提供燃料如氢气,它们就会产生热量和动力。由于它们跟内燃机相比产生较少或没有排放,所以它们长期以来一直吸引着科学家、环保主义者和其他人。此外,它们还有广泛的用途,包括为建筑物、发电厂、汽车和其他系统供电。然而燃料电池缺乏广泛的商业化,除其他外,是由于加速关键燃料电池过程所需的昂贵催化剂的高成本。一组被称为铂族金属的六种贵金属已被证明是最有效的催化剂。虽然这些金属是高效和持久的,但由于其稀缺性,它们的成本非常高。因此,研究人员正在寻找成本更低的选择。克服障碍铁基催化剂就是这样一种选择。铁非常有吸引力,因为它很丰且价格低廉。但它的性能不如铂金,特别是因为它缺乏耐久性从而无法承受燃料电池内的高度腐蚀性和氧化性环境。为了克服这一障碍,研究小组将四个氮原子跟铁结合起来。研究人员随后将该材料嵌入几层石墨烯中以对局部几何和化学结构进行精确的原子控制。由此产生的结构是一个大大改善的催化剂。按照研究小组的说法,这种催化剂被认为是迄今为止生产的最有效的铁基催化剂--超美国能源部2025年的电流密度目标;另外,它还实现了接近铂族催化剂的耐久性等级。Wu表示,所有这些都表明,铁基催化剂有可能使燃料电池,尤其是氢燃料电池,在商业用途上更加实惠。现在,研究人员正在计划进行后续研究以进一步改进该催化剂。PC版:https://www.cnbeta.com/articles/soft/1301589.htm手机版:https://m.cnbeta.com/view/1301589.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人