太阳能"人造叶"利用阳光生产出清洁的、可用于汽车的液体燃料

太阳能"人造叶"利用阳光生产出清洁的、可用于汽车的液体燃料来自剑桥大学的研究人员利用光合作用的力量,将二氧化碳、水和阳光在一个步骤中转化为多碳燃料--乙醇和丙醇。这些燃料具有很高的能量密度,可以很容易地储存或运输。与化石燃料不同,这些太阳能燃料产生净零碳排放,而且完全可再生,与大多数生物乙醇不同,它们不会从粮食生产中转移任何农业用地。虽然该技术仍处于实验室规模,但研究人员表示,他们的"人造树叶"是向基于化石燃料的经济过渡的重要一步。该结果在《自然-能源》杂志上刊出。生物乙醇被认为是汽油的清洁替代品,因为它是由植物而不是化石燃料制成的。今天在道路上行驶的大多数汽车和卡车都使用含有高达10%乙醇的汽油(E10燃料)。美国是世界上最大的生物乙醇生产国:根据美国农业部的数据,美国种植的所有玉米中几乎有45%被用于生产乙醇。领导这项研究的ErwinReisner教授说:"像乙醇这样的生物燃料是一项有争议的技术,主要是因为它们占用了本可以用来种植粮食的农业用地。"带有人造叶子的光反应器在太阳照射下工作几年来,位于优素福-哈米德化学系的赖斯纳研究小组一直在开发可持续的零碳燃料,其灵感来自于光合作用--植物将阳光转化为食物的过程--利用人造叶子。到目前为止,这些人造叶子只能制造简单的化学品,如合成气,一种氢气和一氧化碳的混合物,用于生产燃料、药品、塑料和肥料。但是为了使该技术更加实用,它需要能够在单一太阳能供电的步骤中直接生产更复杂的化学品。现在,这种人造叶子可以直接生产清洁的乙醇和丙醇,而不需要生产合成气的中间步骤。研究人员开发了一种基于铜和钯的催化剂。该催化剂经过优化,允许人造叶子生产更复杂的化学品,特别是多碳醇的乙醇和正丙醇。这两种醇都是高能量密度的燃料,可以轻松运输和储存。其他科学家已经能够利用电力生产类似的化学品,但这是第一次只利用太阳的能量用人造叶子生产如此复杂的化学品。论文的第一作者MotiarRahaman博士说:"将阳光照射在人造叶子上,并从二氧化碳和水中获得液体燃料,这是一个令人惊讶的化学过程。通常情况下,当你试图使用人造叶子装置将二氧化碳转化为另一种化学产品时,你几乎总是是得到一氧化碳或合成气,但在这里,我们已经能够仅仅使用太阳的力量来生产一种实用的液体燃料。这是一个令人兴奋的进步,为我们的工作开辟了全新的途径。"目前,该装置是一个概念验证,只显示出适度的效率。研究人员正在努力优化光吸收器,以便它们能够更好地吸收太阳光,并优化催化剂,以便它能够将更多的太阳光转化为燃料。还需要进一步的工作,使该装置可以扩展,以便它可以生产大量的燃料。"即使仍有工作要做,我们已经展示了这些人造叶子的能力,"Reisner说。"重要的是表明我们可以超越最简单的分子,制造出在我们过渡到远离化石燃料时直接有用的东西。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360459.htm手机版:https://m.cnbeta.com.tw/view/1360459.htm

相关推荐

封面图片

漂浮“人造树叶”可在水上生产清洁燃料

漂浮“人造树叶”可在水上生产清洁燃料英国剑桥大学一个研究团队设计出一种超薄、灵活的设备,就像“人造树叶”,其灵感来自植物将阳光转化为食物的光合作用,能生产一种可持续的汽油替代品。这种设备成本低、足够轻,可以漂浮在水上而不会占用陆地空间。相关研究发表在最近的《自然》杂志上。团队在剑桥大学标志性景点附近,包括叹息桥、雷恩图书馆和国王学院礼拜堂,在康河上对轻质“树叶”进行了户外测试,结果表明,它们可像植物叶子一样有效地将阳光转化为燃料。这是第一次在水上产生清洁燃料,如果扩大规模,人造树叶可用于受污染的水道、港口甚至海上,有助于减少全球航运业对化石燃料的依赖。尽管近年来风能和太阳能等可再生能源技术已经越来越便宜且容易获得,但对于航运等行业来说,脱碳是一个更高的要求。全球约80%的贸易是由以化石燃料为动力的货船运输的,但在围绕气候危机的讨论中,该行业几乎没有受到关注。几年来,剑桥研究小组一直致力于开发基于光合作用原理的可持续汽油解决方案来解决这个问题。2019年,他们开发了一种人造树叶,利用阳光、二氧化碳和水制造合成气——一种用于生产许多化学品和药物的关键中间体。早期的原型通过将两种光吸收剂与合适的催化剂结合来产生燃料。然而,它采用了厚玻璃基板和防潮涂层,这使得设备体积庞大。对于新版本的人造树叶,研究人员面临的挑战是如何将光吸收剂沉积在轻质基材上并保护它们免受水渗透。为了克服这些挑战,该团队将薄膜金属氧化物和钙钛矿材料涂在柔性塑料和金属箔上。这些设备覆盖有微米级的防水碳基层,可防止水分降解。最终他们得到了一种既能顺利工作,看起来又像一片真正树叶的设备。研究表明,这些叶片结合了大多数太阳能燃料技术的优势。人造树叶与现代制造技术兼容,标志着向太阳能燃料生产自动化和规模化迈出了关键一步。PC版:https://www.cnbeta.com/articles/soft/1305743.htm手机版:https://m.cnbeta.com/view/1305743.htm

封面图片

太阳能新技术利用粪便制造氢燃料 转化率高达35%

太阳能新技术利用粪便制造氢燃料转化率高达35%氢基燃料是最有前途的清洁能源之一。但生产纯氢气是一个能源密集型过程,通常需要煤或天然气以及大量电力。在《细胞报告物理科学》(CellReportsPhysicalScience)杂志的一篇论文中,由UIC工程师MeeneshSingh领导的一个多机构团队揭示了绿色制氢的新工艺。这种方法利用一种名为生物炭的富碳物质来减少将水转化为氢气所需的电量。通过使用太阳能或风能等可再生能源,并将副产品用于其他用途,该工艺可将温室气体排放量降至净零。化学工程系副教授辛格说:"我们是第一个证明可以利用生物物质在几分之一伏特的条件下生产氢气的小组。这是一项变革性技术。"用于制造清洁氢气的生物炭。资料来源:ennyFontaine/UIC电解是将水分离成氢和氧的过程,需要电流。在工业规模上,通常需要化石燃料来产生这种电力。最近,科学家们通过在反应中引入碳源,降低了水分裂所需的电压。但这一过程也要使用煤或昂贵的化学品,并释放出二氧化碳作为副产品。辛格及其同事对这一工艺进行了改进,改用普通废品中的生物质。通过将硫酸与农业废弃物、动物粪便或污水混合,他们制造出一种名为生物炭的泥浆状物质,这种物质富含碳。研究小组试验了由甘蔗皮、大麻废料、废纸和牛粪制成的不同种类的生物炭。加入电解室后,所有五种生物炭都降低了将水转化为氢气所需的功率。其中表现最好的是牛粪,可将所需电力降低六倍,约为五分之一伏特。伊利诺伊大学芝加哥分校副教授MeeneshSingh(右)和博士后研究员RohitChauhan在Singh的实验室工作。图片来源:JennyFontaine/UIC由于对能量的要求很低,研究人员可以用一个标准硅太阳能电池在0.5伏电压下产生大约15毫安的电流为反应提供能量。这还不及一节AA电池产生的电量。辛格实验室的合著者和博士后学者罗希特-乔汉(RohitChauhan)说:"它的效率非常高,生物炭和太阳能几乎有35%转化为氢气。这些数字创下了世界纪录;这是任何人展示过的最高数字。"要使这一过程实现净零排放,就必须捕获反应产生的二氧化碳。但辛格说,这也会带来环境和经济效益,比如生产纯二氧化碳来碳酸饮料,或将其转化为乙烯和塑料制造中使用的其他化学品。"它不仅实现了生物废料利用的多样化,还能清洁生产氢气以外的不同化学物质,"论文共同第一作者、美国加州大学伯克利分校(UIC)毕业生尼希坦-卡尼(NishithanKani)说。"这种廉价的制氢方式可以让农民自给自足地满足他们的能源需求,或者创造新的收入来源"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433564.htm手机版:https://m.cnbeta.com.tw/view/1433564.htm

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到180.9mmolgcat-1h-1,选择性达到96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+light=2CO+2H2)的应用。该研究提出,用O部分取代InGaN中的N可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性InGaN纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431408.htm手机版:https://m.cnbeta.com.tw/view/1431408.htm

封面图片

革命性的可再生能源生产方式:利用阳光从空气中生产氢气燃料

革命性的可再生能源生产方式:利用阳光从空气中生产氢气燃料当该装置简单地暴露在阳光下时,它从空气中获取水分并产生氢气。该成果于2023年1月4日发表在《先进材料》上。该技术的革新之处在于新型气体扩散电极是透明的、多孔的和导电的,使这种以太阳能为动力的技术能够将水-来自空气中的气体状态变成氢燃料。"为了实现一个可持续发展的社会,我们需要有办法将可再生能源储存为可以作为燃料和工业原料的化学品。太阳能是最丰富的可再生能源形式,我们正在努力开发具有经济竞争力的方法来生产太阳能燃料,"EPFL光电纳米材料分子工程实验室的西武拉说,他是这项研究的主要研究者。凯文-西武拉在他的实验室。资料来源:AlainHerzog/EPFL来自植物叶片的灵感在研究人员对可再生无化石燃料的研究中,EPFL的工程师与丰田汽车欧洲公司合作,从植物能够利用空气中的二氧化碳将太阳光转化为化学能的方式中获得灵感。植物从其环境中收获二氧化碳和水,并在阳光的额外能量的推动下,将这些分子转化为糖和淀粉,这一过程被称为光合作用。阳光的能量以化学键的形式储存在糖和淀粉的内部。由Sivula和他的团队开发的透明气体扩散电极,当涂上光收集半导体材料时,非常像一片人造叶子,从空气和阳光中收集水以产生氢气。阳光的能量以氢键的形式被储存起来。但这种装置的基底不是用传统的对阳光不透明的层来构建电极,而是实际上是一个由毛毡玻璃纤维组成的3维网。这项工作的主要作者MarinaCaretti说:"开发我们的原型设备是具有挑战性的,因为透明的气体扩散电极以前没有被证明过,我们必须为每个步骤开发新的程序。然而,由于每个步骤都相对简单且可扩展,我认为我们的方法将为广泛的应用打开新的视野,从用于太阳能驱动的氢气生产的气体扩散基板开始。"从液态水到空气中的湿度Sivula和其他研究小组先前已经表明,通过使用一种被称为光电化学(PEC)电池的装置从液态水和阳光中产生氢燃料,有可能进行人工光合作用。一般来说,PEC电池是一种利用入射光刺激浸在液体溶液中的光敏材料(如半导体)来引起化学反应的装置。但就实际用途而言,这一过程有其缺点,例如,制造使用液体的大面积PEC装置很复杂。Sivula想表明,PEC技术可以改用于收集空气中的湿度,从而导致他们开发了新的气体扩散电极。电化学电池(例如燃料电池)已经被证明可以用气体而不是液体来工作,但是之前使用的气体扩散电极是不透明的,与太阳能供电的PEC技术不兼容。现在,研究人员正将他们的努力集中在优化该系统上。理想的纤维尺寸是多少?理想的孔径大小?理想的半导体和膜材料是什么?这些都是欧盟项目"Sun-to-X"正在研究的问题,该项目致力于推进这项技术,并开发将氢气转化为液体燃料的新方法。制作透明的气体扩散电极为了制造透明的气体扩散电极,研究人员从一种玻璃棉开始,它是一种石英(也称为氧化硅)纤维,并通过在高温下将纤维熔合在一起,将其加工成毡片。接下来,晶片被涂上一层透明的掺氟氧化锡薄膜,这种薄膜以其出色的导电性、坚固性和易于扩展而闻名。这些最初的步骤产生了一个透明、多孔和导电的晶圆,这对于最大限度地接触空气中的水分子和让光子通过至关重要。然后,晶圆再次被涂层,这次是一层吸收阳光的半导体材料的薄膜。这第二层薄涂层仍然让光通过,但由于多孔基质的大表面积而显得不透明。就像现在这样,一旦暴露在阳光下,这种涂层的晶圆已经可以生产氢燃料。科学家们继续建造了一个包含涂层晶片的小室,以及一个用于分离产生的氢气以进行测量的薄膜。当他们的小室在潮湿的条件下暴露在阳光下时就会产生氢气,实现了科学家们设定的目标,显示出用于太阳能驱动的氢气生产的透明气体扩散电极的概念是可以实现的。虽然科学家们在他们的演示中没有正式研究太阳能到氢气的转换效率,但他们承认,对于这个原型来说效率相对不高,目前还不如在基于液体的PEC电池中实现得更好。基于所使用的材料,涂层硅片的最大理论太阳能-氢气转换效率为12%,而液体电池的效率已被证明高达19%。...PC版:https://www.cnbeta.com.tw/articles/soft/1339415.htm手机版:https://m.cnbeta.com.tw/view/1339415.htm

封面图片

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源革命性的光反应器设计阿迪提亚-莫希特(AdityaMohite)的实验室专门从事化学和生物分子工程研究,是建造这种集成光反应器的领头人。该装置设计中的一个关键因素是防腐蚀屏障,它能有效地将半导体与水隔绝,同时又不妨碍电子转移。据发表在《自然-通讯》(NatureCommunications)上的研究报告称,该装置的太阳能-氢气转换效率高达20.8%,令人印象深刻。莱斯大学莫希特研究小组及其合作者开发的光反应器实现了20.8%的太阳能-氢气转换效率。资料来源:GustavoRaskosky/莱斯大学奥斯汀-费尔(AustinFehr)是一名化学与生物分子工程博士生,也是这项研究的主要作者之一,他强调了这项工作的重要性:"利用阳光作为能源生产化学品是实现清洁能源经济的最大障碍之一。我们的目标是建立经济上可行的平台,生成太阳能衍生燃料。在这里,我们设计了一种能吸收光线并在其表面完成电化学分水化学反应的系统。"这种装置被称为光电化学电池,因为光的吸收、转化为电能以及利用电能为化学反应提供动力都发生在同一个装置中。迄今为止,利用光电化学技术生产绿色氢气一直受到效率低和半导体成本高的阻碍。样本视频中的四张系列静态图片,展示了莱斯大学的光反应器如何在模拟阳光的刺激下分裂水分子并产生氢气。资料来源:莫希特实验室/莱斯大学费尔解释了他们发明的与众不同之处:"所有这种类型的设备都只利用阳光和水产生绿色氢气,但我们的设备很特别,因为它的效率破了纪录,而且使用的半导体非常便宜。"莫希特实验室及其合作者通过将他们极具竞争力的太阳能电池转化为反应器,利用收集到的能量将水分离成氧气和氢气,从而创造出了这一装置。他们必须克服的挑战是,卤化物过氧化物晶石在水中极不稳定,用于绝缘半导体的涂层最终不是破坏了它们的功能,就是损坏了它们。AyushAgrawal(左起)、FaizMandani和AustinFehr图片来源:GustavoRaskosky/莱斯大学"在过去的两年里,我们反反复复尝试了不同的材料和技术,"这项研究的合著者、莱斯大学化学工程师迈克尔-王(MichaelWong)说。在漫长的试验未能取得预期效果后,研究人员终于找到了一个成功的解决方案。Fehr说:"我们的主要见解是,你需要两层屏障,一层用来阻挡水,一层用来在过氧化物层和保护层之间实现良好的电接触。我们的成果是无太阳能浓缩的光电化学电池中效率最高的,也使用卤化物包晶石半导体的光电化学电池中整体效率最高的。"对于一个历来由昂贵得令人望而却步的半导体所主导的领域来说,这是一个创举,它可能代表了有史以来第一次实现这类设备商业可行性的途径。研究人员介绍说,他们的阻挡层设计适用于不同的反应和不同的半导体,因此适用于许多系统。莫希特小组介绍说:"我们希望这样的系统能成为一个平台,利用丰富的原料,只需阳光作为能量输入,就能驱动各种电子进行燃料形成反应。"Fehr补充说:"随着稳定性和规模的进一步提高,这项技术可以开启氢经济,改变人类从化石燃料到太阳能燃料的制造方式。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372527.htm手机版:https://m.cnbeta.com.tw/view/1372527.htm

封面图片

重塑太阳能电池板:新原型通过人工光合作用产生甲烷

重塑太阳能电池板:新原型通过人工光合作用产生甲烷最近,发表在《ACSEngineeringAu》上的研究人员复制了这一自然过程,利用二氧化碳(CO2)、水和阳光制造出高能燃料甲烷。他们的创新原型系统有助于为取代不可再生的化石燃料铺平道路。尽管甲烷是一种强效温室气体,但它也是一种高能量密度燃料,是天然气的主要成分。包括天然气在内的化石燃料需要数百万年才能形成,从环境中提取这些燃料会产生有害影响。找到利用可再生能源生产甲烷的方法,有助于随着时间的推移减少对不可再生化石燃料的需求。这种特化细胞阵列有助于利用人工光合作用生产更多可持续燃料。图片来源:改编自《ACSEngineeringAu》,2023,DOI:10.1021/acsengineeringau.3c00034太阳是每天为地球提供可持续、丰富能源的来源之一。人类曾尝试用太阳能电池板来利用这一资源,但植物已经掌握了这一方法,它们利用阳光进行光合作用,将二氧化碳和水转化为氧气和糖,然后用作燃料。此前,KazunariDomen及其同事开发了一种系统,利用阳光将水分成氢气和氧气。现在,他们希望对这一过程进行改进,以便更全面地模仿光合作用,吸收二氧化碳,将太阳的能量储存在甲烷中,同时仍然使用具有成本效益且易于扩展的材料。开发甲烷生产原型研究小组制作了一组类似太阳能电池板的反应池,每个反应池都涂有掺铝钛酸锶(SrTiO3)光催化剂,以帮助启动反应。将这些涂有催化剂的电池装满水,放在阳光下暴晒。在这种条件下,水分裂成氢气和氧气,并将其分离,净化后的氢气被送入系统的第二部分。在第二部分中,氢气与二氧化碳发生反应,生成甲烷和水,后者通过光反应器被循环回第一步。接下来,他们创建了一个130平方英尺的电池阵列,大小相当于一间小卧室,在各种天气条件下连续运行了三天。虽然前景看好,但研究小组认识到,在这些设备成为大规模发电的可行选择之前,人工光合作用系统的效率还需要提高。研究人员说,这种概念验证系统可用于生产塑料或其他化学原料的前体,也可扩大规模,生产更多的可持续生物燃料。参考文献:"太阳光驱动的光催化水分离和二氧化碳甲烷化作为人工光合作用的一种手段生产甲烷",作者:TaroYamada、HiroshiNishiyama、HirokiAkatsuka、ShinjiNishimae、YoshiroIshii、TakashiHisatomi和KazunariDomen,2023年9月25日,ACSEngineeringAu。DOI:10.1021/acsengineeringau.3c00034编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404421.htm手机版:https://m.cnbeta.com.tw/view/1404421.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人