中国科学家又发明了“数据误用”。

None

相关推荐

封面图片

科学家发明了一种可以不断生长的机器人

科学家发明了一种可以不断生长的机器人这个名为FiloBot的生长机器人由意大利理工学院的科学家设计,灵感来自攀缘植物的适应性和环境探索策略。该机器人使用热塑材料来构建自己的茎状身体,生长方向由环境刺激决定,光线传感使之拥有向光性或趋暗性,重力传感使之能向地心前行,一般扰动可以自主决策避障。投稿:@TNSubmbot频道:@TestFlightCN

封面图片

比光子本身还薄 科学家发明了已知最小的导光方式

比光子本身还薄科学家发明了已知最小的导光方式芝加哥大学的科学家们发现,一种只有几个原子厚的玻璃晶体可以捕捉和携带光--而且可以用于各种应用。研究报告合著者HanyuHong手持的塑料中央的细线就是这种材料。图片来源:JeanLachat通过一系列创新实验,他和他的团队发现,只有几个原子厚度的玻璃晶体薄片可以捕获并携带光线。不仅如此,它的效率还出奇地高,可以传播相对较远的距离--一厘米,这在基于光的计算领域是非常远的。JiwoongPark教授(左)和科学家HanyuHong(右)在激光实验室,他们在那里确认这种材料可以携带光--尽管它比光本身还要小。图片来源:JeanLachat这项研究最近发表在《科学》(Science)杂志上,展示了本质上的二维光子电路,并可能为新技术开辟道路。这项研究的主要作者、詹姆斯-弗兰克研究所(JamesFranckInstitute)和普利兹克分子工程学院(PritzkerSchoolofMolecularEngineering)化学系教授兼系主任朴智雄(JiwoongPark)说:"我们完全惊讶于这种超薄晶体的强大功能;它不仅能保持能量,还能将能量传递到比任何人在类似系统中看到的要远一千倍的地方。被困住的光也表现得像在二维空间中行进一样"。引导光线新发明的系统是一种引导光的方法,被称为波导,本质上是二维的。在测试中,研究人员发现,他们可以使用极其微小的棱镜、透镜和开关来引导光沿着芯片的路径--所有这些都是电路和计算的要素。光子电路已经存在,但它们要大得多,而且是三维的。最关键的是,在现有的波导中,光粒子--即所谓的光子--总是在波导内封闭地传播。科学家们解释说,在这种系统中,玻璃晶体实际上比光子本身还要薄,因此光子的一部分实际上在传播过程中伸出了晶体。JiwoongPark教授(左)和科学家HanyuHong(右)在芝加哥大学Park的实验室里检查这种材料。在测试中,他们可以使用微小的棱镜、透镜和开关来引导光线沿着芯片的路径--所有这些都是电路和计算的要素。图片来源:让-拉查特这就有点像在机场里建造一个传送行李箱的管道与把行李箱放在传送带上的区别。在传送带上,行李箱是露天的,你可以很容易地在途中看到并调整它们。这种方法使得利用玻璃晶体制造复杂设备变得更加容易,因为光线可以通过透镜或棱镜轻松移动。光子还可以体验沿途的状况信息。想想看,检查从室外进来的行李箱,看看外面是否下雪了。同样,科学家们可以想象用这些波导来制造微观层面的传感器。Park解释说:"比如说,你有一个液体样本,你想感知是否存在某种特定的分子。你可以这样设计,使波导穿过样品,而该分子的存在将改变光的表现。"科学家们还对构建非常薄的光子电路感兴趣,这种电路可以堆叠在一起,在相同的芯片面积上集成更多的微小器件。他们在这些实验中使用的玻璃晶体是二硫化钼,但其原理也适用于其他材料。科学家们说,虽然理论科学家们已经预测到这种行为应该存在,但在实验室中真正实现这种行为却是一个长达数年的过程。"这是一个极具挑战性但又令人满意的问题,因为我们进入了一个全新的领域。因此,我们所需要的一切都必须自己设计--从材料的生长到测量光是如何移动的,"该论文的共同第一作者、研究生HanyuHong说。...PC版:https://www.cnbeta.com.tw/articles/soft/1385859.htm手机版:https://m.cnbeta.com.tw/view/1385859.htm

封面图片

上:科学家发明了能够把压力转换成能量的手环下:IT支持via

封面图片

颜宁发明了“科研经费包干制”,给经费就好,想干啥就干啥,这叫“信任科学家”。有她这样的科学家,还敢要信任?

封面图片

科学家发明了一种全新的制冷方法https://www.bannedbook.org/bnews/cnnews/20230802/

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于3月19日发表在《应用物理通讯》(AppliedPhysicsLetters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡--这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者SatoshiKusaba说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在TMD材料中诱导相干声子这一基本问题。"WSe2中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:SatoshiKusaba/横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2的TMD薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-WeiLin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制TMD的电子状态打开大门,这对于开发谷电技术和使用TMD的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430619.htm手机版:https://m.cnbeta.com.tw/view/1430619.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人