中微公司尹志尧:公司等离子体刻蚀设备已应用于 128 层及以上的量产

中微公司尹志尧:公司等离子体刻蚀设备已应用于128层及以上的量产中微公司董事长、总经理尹志尧3月19日在2023年度业绩说明会上表示,在逻辑集成电路制造环节,公司开发的12英寸高端刻蚀设备已运用在国际知名客户最先进的生产线上并用于5纳米、5纳米以下器件中若干关键步骤的加工;同时,公司根据先进集成电路厂商的需求持续进行设备开发和工艺优化。在3DNAND芯片制造环节,公司的等离子体刻蚀设备已应用于128层及以上的量产,同时公司根据存储器件客户的需求正在开发极高深宽比的刻蚀设备和工艺;公司也根据逻辑器件客户的需求,正在开发更先进刻蚀应用的设备。

相关推荐

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体?在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子--带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏1万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电--球状闪电--是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是X射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料”美国政府定义了多少种?...PC版:https://www.cnbeta.com.tw/articles/soft/1432055.htm手机版:https://m.cnbeta.com.tw/view/1432055.htm

封面图片

新设计大大延长了等离子体火炬的使用寿命

新设计大大延长了等离子体火炬的使用寿命一项突破性设计将等离子体火炬的使用寿命从数天延长到数年,克服了重大的技术挑战,并可能因其更高的效率和可持续性而给多个行业带来革命性的变化。等离子体割炬是产生热等离子体的设备,因其能有效产生高温等离子体而在各行各业中举足轻重。它可应用于低碳冶金、粉末球化、碳材料制备和先进材料喷涂等多个领域。然而,其有限的使用寿命阻碍了其大规模应用。传统的固定阴极在耗尽后必须更换,导致寿命短、维护成本高。在这项研究中,研究人员开发了一种连续进给阴极系统,可以快速补充已磨损的阴极。这种操作消除了使用寿命的限制,使等离子火焰的运行寿命几乎无限。"设计克服了五大难关,"已经监督这项实验长达160个小时的高级工程师李军说,"这包括导电、导热、密封、水冷和连续推进机制。对于传统等离子火焰来说,160小时标志着结束,但在这里,这仅仅是个开始。"这一重大进步推动了等离子体应用的产业化,开创了一个高效和可持续发展的新时代。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425904.htm手机版:https://m.cnbeta.com.tw/view/1425904.htm

封面图片

等离子体脉冲有望成为现实生活中的"冷冻射线"

等离子体脉冲有望成为现实生活中的"冷冻射线"冷冻射线利用等离子脉冲带走热量不管是为了勒索一座城市的赎金,还是为了在咖啡店不排队,冷冻射线都是漫画书和电影中的一大亮点。它们也让工程师们头疼不已,因为它们不仅违反了热力学第二定律,还把定律的头塞进了马桶,直到现在。等离子体物理学的一项新进展在提供实用的冷冻射线方面大有可为,美国空军已向霍普金斯大学的热工程实验与模拟实验室(ExSiTELab)拨款75万美元,用于一个为期三年的项目,以充分开发这项技术的潜力。霍普金斯大学的衍生公司LaserThermal将建造一个原型。通常情况下,利用等离子体冷却东西的想法就像用冰来烧烤一样合乎逻辑。等离子体是一种电离气体,其温度可以达到太阳温度的数倍,但它们也有一些令人惊讶的能力。其中之一就是,尽管温度很高,但等离子体刚产生时可以与其他物质相互作用,产生冷却效果。脉冲等离子体的能量流与目标表面发生物理、化学和电磁相互作用,产生一种效应,使表面吸收的水分子和二氧化碳分子蒸发。这将带走能量并使表面迅速冷却几十度。脉冲等离子体可防止其抵消冷却效果。用于产生等离子体的激光设备弗吉尼亚大学霍普金斯说:"因此,当我们开启等离子体时。可以立即测量等离子体照射到的地方的温度,然后观察表面的变化,表面先冷却,然后升温。我们只是在某种程度上对为什么会发生这种情况感到困惑,因为这种情况一直在重复发生。我们没有任何信息可以利用,因为之前没有任何文献能够像我们这样精确地测量温度变化。没有人能够如此迅速地做到这一点。"美国空军和太空部队之所以对这项技术感兴趣,是因为在太空或极高海拔地区冷却电子设备存在问题。通常的冷却方法是让水或空气等流体在元件周围循环,但在没有空气,当然也没有水的地方,这种方法是不可能实现的。相反,电子元件被放置在金属冷却板上,将热量导入散热器。由于这种方法既笨重又低效,人们希望霍金斯的冷冻射线能提供一种替代方法。其基本构想是用一个带有传感器的机械臂,将电路中的热点锁定,然后用冷风将其吹走。然而,还有大量工作要做。目前,该工艺使用从美国海军借来的设备和氦作为等离子介质。下一步是制造出更紧凑、更轻的原型,同时探索其他可能更有效的气体。这项研究发表在《自然-通讯》和《ACSNano》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382453.htm手机版:https://m.cnbeta.com.tw/view/1382453.htm

封面图片

乌克兰研究人员参与取得聚变发电成果 微波加热等离子体迎来突破性进展

乌克兰研究人员参与取得聚变发电成果微波加热等离子体迎来突破性进展HeliotronJ装置的结构。资料来源:京都大学/HeliotronJ小组质体必须保持在正确的密度、温度和时间,才能发生核聚变。包括马克斯-普朗克等离子体物理研究所在内的研究团队已经确定了等离子体生产的三个关键步骤,并利用HeliotronJ设备研究核聚变等离子体放电。他们发现,在不对准磁场的情况下施加2.45GHz微波会产生密集的等离子体,这有可能简化未来的聚变研究。主要作者YuriiVictorovichKovtun,尽管在目前的俄乌战争中被迫撤离哈尔科夫物理技术研究所,但仍继续与京都大学合作,利用微波创造稳定的等离子体。让等离子体恰到好处是利用核聚变所承诺的大量能量的障碍之一。等离子体--离子和电子的汤--必须保持适当的密度、温度和时间,使原子核融合在一起,以达到预期的能量释放。一种配方涉及使用大型的、带有强大磁铁的甜甜圈形状的装置,这些磁铁包含等离子体,同时仔细排列的微波发生器加热原子混合物。物理学聚变能量波的概念聚变能源是一个迷人的、有前途的研究领域,它试图利用为太阳提供动力的相同过程来生产清洁、丰富和几乎无限的能源。现在,京都大学先进能源研究所与哈尔科夫研究所和马克斯-普朗克等离子体物理研究所合作,利用低频率的微波功率,创造出具有聚变适宜密度的等离子体。研究小组已经确定了等离子体生产的三个重要步骤:闪电般的气体分解、初步等离子体生产和稳态等离子体。这项研究正在使用HeliotronJ进行,这是位于京都大学南部宇治校区的先进能源研究所的实验性聚变等离子体设备的最新迭代。小组负责人长崎和信解释说:"最初,我们没有想到在HeliotronJ中会出现这些现象,但惊讶地发现等离子体的形成没有回旋共振。"在几十年的经验基础上,长崎的团队正在探索HeliotronJ中的聚变等离子体放电现象。该小组将2.45GHz的微波功率的强烈爆发注入进料气体。家庭中的微波炉在这个相同的频率下工作,但HeliotronJ的功率大约是10倍,而且集中在几个气体原子上。"出乎意料的是,我们发现在没有对准HeliotronJ的磁场的情况下爆破微波会产生一种放电,将电子从其原子上撕下来,并产生一种特别密集的等离子体,"长崎惊叹道。"我们非常感谢我们的同事能够继续支持这项研究,关于这种利用微波放电产生等离子体的方法的发现可能会简化未来的聚变研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352969.htm手机版:https://m.cnbeta.com.tw/view/1352969.htm

封面图片

改善半导体的导热性的新方法:使用表面等离子体激元进行传热

改善半导体的导热性的新方法:使用表面等离子体激元进行传热缩小半导体尺寸的需求,加上器件热点产生的热量未能有效分散的问题,对现代器件的可靠性和耐用性产生了负面影响。现有的热管理技术还无法胜任这项任务。因此,发现一种利用基板上金属薄膜产生的表面波来散热的新方法是一个重要的突破。韩国科学技术院(院长KwangHyungLee)宣布,机械工程系BongJaeLee教授的研究小组成功测量了新观察到的由“表面等离子体激元”(SPP)在沉积在基板上的金属薄膜中引起的热传递,用于世界上还是第一次。钛(TI)薄膜热导率测量原理及钛薄膜上表面等离子体激元热导率测量原理示意图。图片来源:韩国科学技术院极端热物理与制造中心表面等离子体激元(SPP)是指电介质与金属界面处的电磁场与金属表面的自由电子及类似集体振动粒子之间强烈相互作用而在金属表面形成的表面波。。研究小组利用表面等离子体激元(SPP)(金属-电介质界面产生的表面波)来改善纳米级金属薄膜的热扩散。由于这种新的传热模式是在基板上沉积金属薄膜时发生的,因此它在器件制造过程中非常有用,并且具有能够大面积制造的优点。研究小组表明,由于半径约3厘米、厚度为100纳米的钛(Ti)薄膜上产生表面波,热导率提高了约25%。领导这项研究的韩国科学技术院(KAIST)教授BongJaeLee表示:“这项研究的意义在于,在加工难度较低的基板上沉积的金属薄膜上首次发现了一种利用表面波进行传热的新模式,它可以用作纳米级散热器,以有效地散发容易过热的半导体器件热点附近的热量。”该结果对未来高性能半导体器件的发展具有重大意义,因为它可以应用于纳米级薄膜上的快速散热。特别是,研究团队发现的这种新的传热模式有望解决半导体器件热管理的基本问题,因为它可以在纳米级厚度下实现更有效的传热,而薄膜的导热率通常会因薄膜的热导率而降低。。该研究于4月26日在线发表在《物理评论快报》上,并被选为编辑建议。...PC版:https://www.cnbeta.com.tw/articles/soft/1368781.htm手机版:https://m.cnbeta.com.tw/view/1368781.htm

封面图片

科学家3D打印适用人造卫星的高精度等离子体传感器

科学家3D打印适用人造卫星的高精度等离子体传感器据报道,目前,美国麻省理工学院最新研制3D打印精准等离子体传感器,该设备成本较低,且易于制造,这些数字化设备可以帮助科学家预测天气或者研究气候变化。该等离子体传感器也被称为“延迟电位分析仪(RPAs)”,被人造卫星等轨道航天器用于确定大气化学成分和离子能量分布。3D打印、激光切割流程制造的半导体等离子体传感器,由于该过程需要无尘环境,导致半导体等离子体传感器成本昂贵,且需要几个星期的复杂制造过程。相比之下,麻省理工学院最新研制的等离子体传感器仅需几天时间制造,成本几十美元。由于成本较低、生产速度快,这种新型传感器是立方体卫星的理想选择,立方体卫星成本低廉、低功率且重量轻,经常用于地球上层大气的通信和环境监测。该研究团队使用比硅和薄膜涂层等传统传感器材料更有弹性的玻璃陶瓷材料研制了新型等离子体传感器,通过在塑料3D打印过程中使用玻璃陶瓷,能够制造出形状复杂的传感器,它们能够承受航天器在近地轨道可能遇到的巨大温度波动。研究报告资深作者、麻省理工学院微系统技术实验室(MTL)首席科学家路易斯·费尔南多·委拉斯奎兹-加西亚(LuisFernandoVelasquez-Garcia)说:“增材制造会在未来太空硬件领域产生重大影响,一些人认为,当3D打印一些物体时,必须认可其性能较低,但我们现已证明,情况并非总是这样。”目前这项最新研究报告发表在近期出版的《增材制造杂志》上。多功能传感器等离子体传感器首次用于太空任务是1959年,它能探测到漂浮在等离子体中的离子或者带电粒子的能量,等离子体是存在于地球上层大气中的过热分子混合物。在立方体卫星这样的轨道航天器上,等离子体传感器可以测量能量变化,并进行化学分析,从而有助于科学家预测天气或者监测气候变化。该传感器包含一系列布满小孔的带电网格,当等离子体通过小孔时,电子和其他粒子将被剥离,直到仅剩下离子,当这些离子产生电流,传感器将对其进行测量和分析。等离子体传感器应用成功的关键是对齐网格的孔状结构,它必须具有电绝缘性,同时能够承受温度的剧烈波动,研究人员使用一种可3D打印的玻璃陶瓷材料——Vitrolite,它满足以上特性。据悉,Vitrolite材料最早出现于20世纪初,常应用于彩色瓷砖设计中,成为装饰艺术建筑中最常见的材料。持续耐用的Vitrolite材料可承受高达800摄氏度的高温而不分解,而集成电路结构的等离子体传感器中的高分子材料会在400摄氏度时开始熔化。加西亚说:“当工作人员在无尘室中制造这种传感器时,他们不会有相同的自由度来定义材料和结构,以及它们是如何相互作用,但这可能促成增材制造的最新发展。”重新认识等离子体传感器的3D打印过程陶瓷材料3D打印过程通常涉及到激光轰击陶瓷粉末,使其融合成为各种形状结构,然而,由于激光释放的高热量,该制造过程往往会使材料变得粗糙,并产生瑕疵点。然而,麻省理工学院的科学家在该制造进程中使...PC版:https://www.cnbeta.com/articles/soft/1307479.htm手机版:https://m.cnbeta.com/view/1307479.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人