微软:AI 技术 + 量子计算加速科学发现 250 年的化学进程压缩至 25 年完成

微软:AI技术+量子计算加速科学发现250年的化学进程压缩至25年完成微软表示,我们的愿景是通过最新的AI技术赋能科学家,释放他们的创造潜力,应对一些最紧迫的挑战。为了实现这一愿景,我们需要将生成式AI技术的全部力量与量子-经典混合计算结合起来,以增强科学方法的每一个阶段。微软宣布推出生成式化学和加速DFT(加速密度泛函理论),这些突破性的功能将使科学家有机会将原本未来250年的化学进程压缩至25年完成。

相关推荐

封面图片

微软和 Quantinuum 声称在量子计算领域取得突破

据路透社报道,微软和Quantinuum周三表示,通过提高量子计算机的可靠性,他们在使量子计算机成为商业现实方面迈出了关键一步。量子计算机可以执行传统计算机需要几百万年才能完成的科学计算任务。量子计算的基础单位“量子比特”虽然计算速度极快,但非常敏感,如果量子计算机受到轻微干扰就会产生数据错误。为了克服这个问题,量子计算研究人员通常会制造出远超需求的物理量子比特,并通过纠错技术,产生较少数量但高度可靠和实用的量子比特。微软和Quantinuum表示他们在该领域取得了突破。微软将其编写的纠错算法应用于Quantinuum的物理量子比特上,从30个物理量子比特中获得了大约了4个高度可靠的量子比特。微软负责战略任务和技术的执行副总裁JasonZander表示,该公司相信这是迄今为止量子芯片中可靠量子比特的最佳比例。微软表示,计划在未来几个月内向其云计算客户发布该技术。via匿名标签:#微软#AI#Quantinuum频道:@GodlyNews1投稿:@GodlyNewsBot

封面图片

微软预计10年内实现打造量子超级计算机的工作

微软预计10年内实现打造量子超级计算机的工作这是微软推出的一项新衡量标准,因为整个行业的目标是超越当前嘈杂的中规模量子(NISQ)计算时代。“我们以几年而不是几十年来考虑我们的路线图和量子超级计算机的时间,”斯沃尔说。去年,微软宣布了一项重大突破,其团队首次强调了其创建基于马约拉纳的量子位的能力。马约拉纳量子位的优点是非常稳定(特别是与传统技术相比),但它们也极难创建。微软很早就对这项技术下了赌注,现在,在首次宣布这一里程碑一年后,该团队正在发表一篇新的同行评审论文(在美国物理学会的物理评论B中),证明它确实已经在它通往量子超级计算机的道路。为了达到这一点,微软展示了比一年前首次宣布这项工作时更多的设备和更多的数据的结果。“今天,我们确实处于基础实施水平,”斯沃尔说。我们有嘈杂的中型量子机。它们是围绕物理量子位构建的,而且还不够可靠,无法做一些实用且有利的事情。用于科学或商业行业。作为一个行业,我们需要达到的下一个水平是弹性水平。我们不仅需要能够使用物理量子位进行操作,而且还需要将这些物理量子位放入纠错码中,并将它们用作一个单元来充当逻辑量子位。”Svore认为,要达到这一点,需要一台量子计算机能够每秒执行一百万次可靠的量子操作,并且失败率为万亿分之一。现在的下一步是构建受硬件保护的量子位——Svore表示,该团队在构建这些量子位的工作中正在取得巨大进展。这些量子位很小(一侧小于10微米)并且速度足够快,可以在不到一微秒的时间内执行一个量子位操作。之后,该团队计划致力于纠缠这些量子位,并通过一种称为“编织”的过程来操作它们,这个概念至少从2000年代初就已经被讨论过(主要作为理论)。从那里开始,微软将构建一个更小的多量子位系统并演示一个完整的量子系统。这显然是一个雄心勃勃的路线图,考虑到微软花了多长时间才实现第一个里程碑,我们需要耐心等待团队现在的执行情况。IBM、IonQ和其他公司的目标都是类似的结果,但更倾向使用更成熟的方法来构建量子位,也就是说,我们现在正处于一场超越NISQ时代的军备竞赛。除了分享其路线图外,微软今天还宣布了AzureQuantumElements,这是其通过结合高性能计算、人工智能和量子来加速科学发现的平台,以及AzureQuantum的Copilot,这是一种经过专门训练的人工智能模型,可以帮助科学家(和学生)生成与量子相关的计算和模拟。...PC版:https://www.cnbeta.com.tw/articles/soft/1366701.htm手机版:https://m.cnbeta.com.tw/view/1366701.htm

封面图片

微软量子计算机运行 14000 次实验无差错

微软量子计算机运行14000次实验无差错量子计算机制造商Quantinuum的工程师团队与微软公司的计算机科学家合作,找到了一种在量子计算机上运行实验时大大减少错误的方法。在这项新研究中,Quantinuum提供H2计算机(基于离子陷阱量子比特),微软负责提供逻辑量子比特软件。他们共同使用30个物理量子比特创建了4个逻辑量子比特。该软件可在计算时诊断并纠正错误,而不会通过其主动伴随式提取技术破坏逻辑量子比特。

封面图片

谷歌量子计算机6秒内完成47年计算 超越世界第一超算

谷歌量子计算机6秒内完成47年计算超越世界第一超算论文称,谷歌最新Sycamore量子处理器目前拥有70个量子比特,而2019年版本只有53个量子比特。量子比特的增加,意味着可以成倍地提高量子计算机的性能,这使得新处理器的稳健性大约是以前的2.41亿倍。最新研究将标志着,量子计算迎来里程碑时刻。凭借其计算优势,谷歌的量子计算机有望彻底改变包括人工智能在内的各个领域。以前所未有的速度解决复杂问题,有望解锁下一代人工智能模型,突破许多领域从未超越的界限。47年被凝结成瞬间每个量子比特可以同时存在于0、1或叠加的状态,因此存储和处理这种级别的量子信息的能力很不容易,即使是最快的经典计算机也无法比拟。谷歌团队在一篇论文中表示,量子计算机有望执行超出经典计算机能力的任务。‘我们根据改进的经典方法估算了计算成本,并证明我们的实验超出了现有经典超级计算机的能力。’就算是田纳西州的Frontier超算(这已经是目前全世界最快的超算了),也碰不了量子计算机的瓷。当然前提是量子计算机释放出自身的潜力。因为传统的计算机用二进制的代码语言运行,仅限于0和1,以及双重状态。而量子计算机超越了这个限制。不过,目前研究人员还不能确定谷歌量子计算机的制造成本究竟是多少。但变革性的计算能力是毋庸置疑的。根据谷歌团队的说法,Frontier超级计算机只需6.18秒即可匹配谷歌-53量子比特计算机的计算结果。然而,同样的一台Frontier则需要47.2年才能与谷歌最新的70量子计算机所能提供的的计算能力相匹配。领域内的许多专家都认为谷歌的新量子计算机是一项重大进步。剑桥量子公司Riverlane的CEOSteveBrierley将谷歌的进步称为一个‘重大里程碑’。‘量子霸权?这个问题我们不用再争论了。’同样,苏塞克斯量子技术中心主任的一位教授赞扬谷歌解决了传统计算机难以计算的某些特定学术问题。他强调,在我们眼前关键的下一步,是创建能够纠正自身固有操作错误的量子计算机。虽然IBM尚未对谷歌最新的量子计算机置评,但明显,谷歌在量子计算领域的这一进展引起了全球研究人员和公司的共同关注。毫无疑问,这将为计算技术的发展开辟新的前景和竞争。研究中,团队提到噪声与相干演化相竞争,并破坏了长程相关性,这使得充分利用近期量子处理器的计算能力成为一个巨大的挑战。研究人员进行了随机电路采样(RCS)实验,在这些实验中,他们确定了由量子动力学和噪声之间的相互作用驱动的不同阶段。在量子计算中,这涉及通过运行随机电路,并分析结果输出来测试量子计算机的性能,以评估其解决复杂问题的能力和效率。在电路深度的驱动下,系统首先经历动态相变,其中输出分布不再集中在比特串的一部分中。第二个是由噪声驱动的转换。利用交叉熵基准,研究人员观察到了阶段边界,这可以定义噪声量子演化的计算复杂性。在模拟的估计计算成本,比起经典计算机,53量子比特完成1百万个噪音样本比其快6.18秒。而70量子比特要快47.2年。最后,谷歌团队展示了一个24周期70量子比特的RCS实验,估计保真度为1.7-107%,这意味着在相同保真度下,电路体积增加了约60%。谷歌根据改进的经典方法估算了计算成本,并证明了新量子计算机有着超出了现有经典超级计算机的能力。70量子比特的Sycamore实现了量子优势谷歌团队表示,尽管迄今为止RCS已经取得了成功,但寻找近期噪声量子处理器的实际应用仍然是一个突出的挑战。他们进行的实验就提供了量子动力学如何与噪声相互作用的研究。观察到的相界为高噪声量子器件能够正确利用其计算能力的7个体系提供了定量指导。在弱噪声阶段,全局相关性主导XEB,这一事实保护了RCS免受欺骗的攻击,这些都是未来应用的设计方向。‘量子霸权’成乌龙?其实,早在2019年,谷歌便声称实现了量子霸权。研究人员在NASA网站上发表的论文一经发布,便引起了轰动。论文称,谷歌处理器能够在3分20秒内执行一个计算,而用当今最强大的超级计算机Summit进行同样的计算,需要约10000年。随后,谷歌这篇论文正式在Nature上重磅发表。论文通讯作者JohnMartinis和同事描述了实现量子霸权所取得的技术进展。他们研制了一台由54个量子比特组成的处理器(名为Sycamore处理器)。该处理器利用量子叠加和量子纠缠实现的计算空间与经典比特所能达到的相比,实现了指数级的增加。由于有1个量子比特无法有效工作,处理器实际只用了53个量子比特。研究团队开发的纠错流程可以保证较高的运算保真度(高达99.99%)。为了测试该系统,团队设计了一项对量子电路产生的随机数字进行采样的任务。对于经典计算机来说,这一任务的难度会随量子电路中量子比特数的增加而增加。最后,量子处理器在200秒左右的时间内从量子电路中采集了100万个样本,而当今最强大的超级计算机大约需要1万年的时间才能完成这一任务。Nature表示,‘谷歌实现量子霸权无疑是一项了不起的成就’。然而,针对谷歌‘量子霸权’事件的批判和质疑也随之而至。IBM团队写道,‘在一个经典的系统上,同样的任务的理想模拟可以在2.5天内完成,而且保真度要高得多。’这意味着谷歌实际上并没有表现出量子霸权,而且竞争仍在继续。微软、IBM也下注除了谷歌,IBM、微软也在量子计算机上押注未来。在微软看来,未来十年最大的创新可能是在聚变能源、人工智能和量子计算领域。6月,CEO纳德拉曾公布了微软宏伟目标,10年内建造出量子计算机。将未来250年的化学和材料科学进展压缩到未来25年。AzureQuantumElements通过整合高性能计算(HPC)、人工智能和量子计算的最新突破,可以加速科学发现。值得一提的是,AzureQuantum中的Copilot帮助科学家使用自然语言来推理复杂的化学和材料科学问题。前段时间,IBM量子计算机登上了Nature封面。IBM、加州大学伯克利分校的Nature论文展示了,一条通往有用量子计算的道路。研究首次证明,100+量子比特的量子处理器,可以产生精确结果,并达到超越领先的经典方法。最重要的是,无需纠错就可超越经典计算机。论文中,研究人员在IBM127量子比特鹰(Eagle)量子处理器上模拟了磁性材料的行为。至关重要的是,他们设法绕过了‘量子噪声’,取得了可靠结果。要知道,量子噪声会引入计算误差,是这项技术的主要障碍。有研究统计,自2015年以来量子计算的投资走势不断上涨。与经典计算相比,量子计算具有彻底改变行业和以指数级速度解决复杂问题的潜力。量子计算机的突破可能会彻底改变许多领域,从药物发现到气候建模、金融建模,甚至人工智能,其潜力是巨大的。具体来讲,对不同领域的影响:-密码学:增强加密和解密算法。-药物发现:加速新药的开发。-优化问题:解决复杂的优化挑战。-机器学习:改进模式识别和数据分析。-财务建模:加强财务风险分析和预测。-材料科学:设计具有特定特性的新型材料。-天气预报:提高天气预报的准确性。-量子化学:模拟和研究化学反应。-人工智能:增强人工智能算法和训练模型。这次,谷歌的新量子计算机标志着速度和潜力的突破性进步,开启了一个具有跨多个行业变革意义的计算新时代。...PC版:https://www.cnbeta.com.tw/articles/soft/1371165.htm手机版:https://m.cnbeta.com.tw/view/1371165.htm

封面图片

科学实验首次寻找到"量子超化学"现象存在的直接证据

科学实验首次寻找到"量子超化学"现象存在的直接证据在量子尺度上会出现各种诡异的行为。原子可以同时以多种状态存在,纠缠在一起,以至于它们可以在任何距离上瞬间共享信息,或者穿越它们本不应该穿越的障碍。科学家们正试图利用这些现象来实现更强大的计算、通信系统和其他技术。现在,一个研究小组首次发现了先前预测的量子效应的直接证据,这种效应被称为超化学效应。它始于一种被称为玻色-爱因斯坦凝聚态的奇异物质状态,在这种状态下,一团原子被冷却到几乎绝对零度,使它们进入相同的量子态,并开始表现得像一个大原子。有人提出,哄骗处于这种状态的原子进行化学反应,会产生与通常不同的结果。在经典化学中,混合物中的原子会发生随机碰撞,每次碰撞都有可能使它们连接起来形成分子。但如果原子都处于相同的量子态,它们现在反而会一起行动。这项研究的首席研究员程钦说:"不能再把化学反应看作是独立粒子之间的碰撞,这是一个集体过程。所有的粒子都在一起,作为一个整体进行反应"。共同通讯作者张振东(左)和程钦教授与帮助他们首次观察量子超化学的实验室设备在实验中,研究人员将铯原子冷却到所需的极端温度,然后将它们哄骗到相同的量子态。果然,这些原子似乎正在以一种类似超化学的方式形成分子。这一过程有一些不同于普通化学的结果。首先,由于原子是一起作用的,反应发生得更快--系统中的原子越多,反应速度就越快。研究小组说,最终生成的分子都具有相同的状态,这有助于比传统化学更可靠地生成大批量相同的分子。在这一过程中,研究小组还发现了一个奇怪现象的证据--三体相互作用比二体相互作用发生得更频繁。从本质上讲,三个原子会发生碰撞,其中两个原子连接起来形成分子,而第三个原子则以某种方式帮助这一过程。这一突破有助于为量子化学、量子计算和帮助科学家研究物理定律等新技术铺平道路。到目前为止,这项超级化学研究只在双原子分子中进行,但研究小组计划将这项工作扩展到更复杂的分子中。"我们所看到的与理论预测一致,"Chin说。"这是20年来的科学目标,所以这是一个非常激动人心的时代。"这项研究发表在《自然-物理》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1375667.htm手机版:https://m.cnbeta.com.tw/view/1375667.htm

封面图片

微软实现量子计算最新突破:14000次实验无错误

微软实现量子计算最新突破:14000次实验无错误量子计算的核心优势在于量子比特(qubit),它能够同时处于0和1的状态,实现指数级的并行计算能力。然而,量子系统的高敏感性使得量子比特状态容易受到环境扰动的影响,导致计算误差。因此提升量子比特的稳定性和降低误差率,是实现可靠量子计算的关键。此次微软和Quantinuum的合作,通过结合微软的量子比特虚拟化系统和Quantinuum的离子阱硬件技术,实现了创纪录的低错误率逻辑量子比特操作。这一成果标志着量子计算从嘈杂中间规模量子(NISQ)时代向更具稳定性和可扩展性的2级弹性量子运算时代的迈进。特别引人注目的是,双方在实验中成功完成了多达14000次的量子计算操作而未出现任何错误,这一成就是物理错误率与逻辑错误率间差距的显著展现。此外,微软和Quantinuum的合作还包括在AzureQuantum平台上的共同研发,该平台将全球领先的NISQ硬件引入云端,使量子技术更加易于获取。...PC版:https://www.cnbeta.com.tw/articles/soft/1430808.htm手机版:https://m.cnbeta.com.tw/view/1430808.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人