科学家制成迄今最轻快全功能机器人:以昆虫为模型,轻至 8 毫克

据物理学家组织网报道,美国华盛顿州立大学科学家以昆虫为模型,开发出一个迷你虫子和一个迷你水黾机器人,是迄今为止已知的最小、最轻、最快的全功能微型机器人。据介绍,它们的体重分别为8毫克和55毫克,且都能以每秒6毫米的速度移动,未来有望用于人工授粉、搜救、环境监测、微型制造或机器人辅助手术等领域。研究团队指出,这两款微型机器人的“秘密武器”是能使其移动的微型致动器。借助新的制造技术,他们将致动器小型化到重量不足1毫克,是迄今已知为微型机器人开发的最小、移动速度最快的致动器。这种致动器使用的材料是形状记忆合金,这种材料在加热时会改变形状。与移动机器人一般使用的电机不同,这些合金不包含任何移动部件或旋转部件。形状记忆合金通常不用于大型机器人运动,因为它们太慢了。致动器由两条直径为1/1000英寸的微小形状记忆合金线制成,只要有少量的电流,电线就可以很容易地加热和冷却,使机器人能够以每秒40次的速度拍打鳍或移动脚。在初步测试中,该致动器还能够举起150倍于其自身重量的重物。via匿名标签:#机器人频道:@GodlyNews1投稿:@GodlyNewsBot

相关推荐

封面图片

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人华盛顿州立大学的研究人员开发出了体积最小、速度最快的微型机器人,有望改变从人工授粉到外科手术的各个领域。这些机器人利用形状记忆合金进行运动,比以前的型号明显更轻、更快,通过模仿自然界昆虫的行为,有望实现更高的自主性和效率。图片来源:西悉尼大学图片社速度和微型化方面的突破机械与材料工程学院的博士生、这项研究的第一作者康纳-特里格斯塔德(ConorTrygstad)说:"与这种规模的其他微型机器人相比,这是非常快的速度,尽管它仍然落后于它们的生物亲戚。一只蚂蚁通常重达五毫克,移动速度可达每秒近一米。"微型机器人的关键在于使机器人移动的微型致动器。特里格斯塔德利用一种新的制造技术,将致动器微型化到不足一毫克,这是目前已知最小的致动器。一个西悉尼大学创造的机器人被放在一个25美分硬币旁边,以显示其大小。资料来源:西悉尼大学领导该项目的西悉尼大学机械与材料工程学院工程学副教授NéstorO.Pérez-Arancibia说:"这些致动器是迄今为止为微型机器人开发的最小、最快的致动器。"先进的致动器技术致动器使用一种称为形状记忆合金的材料,这种材料在加热时能够改变形状。之所以称之为"形状记忆",是因为它能记住并恢复到原来的形状。与移动机器人的典型电机不同,这些合金没有任何活动部件或旋转组件。Trygstad说:"它们的机械性能非常好,轻型致动器的开发开辟了微型机器人技术的新领域。"形状记忆合金一般不用于大规模机器人运动,因为它们的速度太慢。但在西悉尼大学的机器人中,执行器是由两根直径为1/1000英寸的微小形状记忆合金线制成的。只需少量电流,这些金属丝就能轻松加热和冷却,使机器人能够以每秒40次的速度扇动鳍或移动脚。在初步测试中,致动器还能举起超过自身重量150倍的物体。与其他用于使机器人移动的技术相比,SMA技术也只需要极少量的电力或热量就能使机器人移动。未来方向与改进Trygstad说:"SMA系统对供电系统的要求要低得多。"他是一名狂热的钓鱼爱好者,长期以来一直在观察水黾,并希望进一步研究它们的动作。虽然西悉尼大学的水黾机器人是用扁平的拍打动作来移动自己,但自然界的昆虫会用腿做更有效率的划船动作,这也是真正的昆虫能移动得更快的原因之一。研究人员希望模仿另一种昆虫,开发出一种既能在水面上也能在水面下移动的水黾型机器人。他们还在努力利用微型电池或催化燃烧技术,使机器人完全自主,不受电源束缚。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419851.htm手机版:https://m.cnbeta.com.tw/view/1419851.htm

封面图片

科学家用植物水凝胶制造可导航、可改变形状的微型机器人

科学家用植物水凝胶制造可导航、可改变形状的微型机器人与刚性微型机器人不同,软性微型机器人对组织更友好,因为它们可以轻松通过或挤入生物系统。然而,挑战在于如何制造出能够感知和适应环境的软微型机器人,而且由于它们是异物,不会引发免疫反应。英国滑铁卢大学(UniversityofWaterloo)的研究人员开发了一种生物相容性植物水凝胶,用于制造可导航的微型机器人,这种机器人能够根据外部化学刺激改变形状。该研究的通讯作者哈迈德-沙沙万(HamedShahsavan)说:"在我的研究小组中,我们正在连接新与旧。"我们利用水凝胶、液晶和胶体等传统软物质,推出了新兴的微型机器人。"这种微小的软机器人最长只有0.4英寸(1厘米),由先进的水凝胶复合材料制成,其中包括可持续的、植物提取的纤维素纳米颗粒。除了具有生物相容性和无毒性外,这种材料还能自我修复;它可以切割,然后再粘合在一起,无需胶水或其他粘合剂,就能形成不同的形状,用于不同的应用。当受到化学刺激时,水凝胶会改变形状,研究人员可以随意调整纤维素纳米粒子的方向,从而"编程"机器人的形状变化,这对于软体机器人来说是一项重要的能力。研究人员设计并测试了两个具有pH响应的小型机器人。第一个机器人能够在pH值的触发下抓取、转移和释放球形或不规则的软生物货物。第二个机器人可以利用磁场通过远程导航在迷宫中转移轻型货物,如下面滑铁卢工程公司制作的视频所示。完成迷宫后,盐酸会使机器人展开并放下货物。研究人员说,水凝胶的pH响应特性意味着微型机器人有可能用于原生pH值较高的人体器官,并有能力耐受酸性pH环境,如膀胱。研究人员计划改进他们的设计,然后在实际应用中进行测试,包括开发一种机械性能更强的水凝胶配方,以提高承载能力。他们还计划将机器人微型化到纳米级尺寸,以便用于治疗或诊断。这种植物基水凝胶的开发标志着人们不再使用由天然聚合物组成的水凝胶,其中一种天然聚合物是从动物组织中提取的明胶。在最近的另一项研究中,来自新南威尔士大学悉尼分校(UNSW)的研究人员创造了一种实验室制造的水凝胶,这种水凝胶模仿人体组织,具有抗菌和自我修复功能,但不使用动物产品。该研究的第一作者阿什利-阮(AshleyNguyen)说:"天然水凝胶在社会中广泛使用,从食品加工到化妆品,但需要从动物身上采集,这就带来了伦理问题。另外,动物提取的材料用于人体也有问题,因为会产生负面的免疫反应"。新南威尔士大学的研究人员转而使用所谓的"色氨酸拉链"(或称Trpzip)来制造水凝胶,Trpzip是含有多个色氨酸的氨基酸短链,可作为拉链促进自组装。新南威尔士大学的Trpzip水凝胶不含动物产品图/新南威尔士大学悉尼分校"我们认为,Trpzip水凝胶和类似材料将为动物源性产品提供更统一、更具成本效益的替代品,"该研究的通讯作者克里斯托弗-基利安(KristopherKilian)说。"如果我们的材料能减少科学研究中使用的动物数量,那将是一个巨大的成果。"滑铁卢大学的研究和新南威尔士大学的研究均发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391889.htm手机版:https://m.cnbeta.com.tw/view/1391889.htm

封面图片

科学家利用超声波引导微泡机器人穿过复杂的脑血管

科学家利用超声波引导微泡机器人穿过复杂的脑血管我们的大脑中有超过404英里(650公里)长的血管。纳米技术的进步使得微型机器人得以发展,它们可以通过这些微小复杂的路径进入以前无法进入的区域,提供精确的药物输送,并进行微创手术。考虑到血管网络的复杂性和遇到的血流压力,需要一种引导微型机器人的方法。利用磁场引导微机器人穿过大脑血管可实现精确操作,但由于微机器人必须具有磁性,因此限制了它们的生物降解性。现在,苏黎世联邦理工学院、苏黎世大学和苏黎世大学医院的研究人员合作开发出了微载体--涂有脂质的充满气体的微气泡--可以利用超声波在小鼠大脑狭窄而复杂的血管中导航。该研究的通讯作者之一丹尼尔-艾哈迈德(DanielAhmed)说:"超声波除了在医学领域广泛应用外,还具有安全和深入人体的特点。"这些小而光滑、充满气体的微气泡直径在1.1至1.4微米之间,由目前用于超声成像的一种荧光造影剂制成。随着时间的推移,它们会在体内溶解,其脂质外壳由与生物细胞膜相同的物质制成。声学微型机器人导航与实时光学成像相结合DelCampoFonseca等人的研究发现,微型机器人可以在体内长期溶解,其脂质外壳由与生物细胞膜相同的物质制成。研究人员将微气泡注入小鼠体内,使其在动物血液中循环。显微镜可对机器人进行实时成像。研究人员在小鼠头部外侧安装了多达四个超声波传感器,发现微机器人对声波的反应是自我组装成群,并沿着脑血管导航。这些机器人通过调整每个传感器的输出来进行引导,速度最高可达1.5微米/秒,并成功地逆向移动,血流速度最高可达10毫米/秒。研究结果表明,声学微型机械臂可在体内生理条件下工作。研究人员分析了超声驱动后的脑组织,发现微机器人既没有破坏血管内壁,也没有造成神经细胞死亡。用一种已在使用的物质制造微气泡有其优势。艾哈迈德说:"由于这些气泡或囊泡已获准用于人体,因此与目前正在开发的其他类型的微载体相比,我们的技术很可能更快地获得批准并用于人体治疗。"现在,他们已经证明了他们的微型机器人可以在小鼠脑血管中导航,研究人员的下一步是在微泡外壳外面附着药物分子。如果成功,这种由超声波激活的微载体就有可能用于治疗癌症、中风和心理疾病。该研究发表在《自然-通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1402929.htm手机版:https://m.cnbeta.com.tw/view/1402929.htm

封面图片

[图]科学家以萤火虫为灵感打造微型机器人 飞行中可发光通信

[图]科学家以萤火虫为灵感打造微型机器人飞行中可发光通信科学家以萤火虫为灵感,创造出了在飞行过程中可以发光、昆虫体积的机器人,并能实现运动跟踪和通信。在温暖的夏夜里,萤火虫通过发光来进行交流、吸引配偶、抵御捕食者或引诱猎物。这些闪闪发光的萤火虫也激发了麻省理工学院研究人员的灵感。从大自然中汲取灵感,他们打造了可以飞行的、昆虫级机器人,并使用了电致发光的柔软人造肌肉。控制机器人翅膀的微小人造肌肉在飞行过程中会发出彩色光。这种电致发光可以使机器人相互通信。例如,如果执行搜索和救援任务,进入倒塌的建筑物,找到幸存者的机器人可以使用灯光向其他人发出信号并寻求帮助。发光的能力也让这些仅比回形针重的微型机器人可以在户外自由飞行。这些机器人非常轻巧,无法携带传感器,因此研究人员必须使用在户外无法正常工作的笨重红外摄像机来跟踪它们。现在,他们已经证明他们可以使用它们发出的光和三个智能手机摄像头精确地跟踪飞行机器人。电气工程与计算机科学(EECS)系教授,电子研究实验室(RLE)软与微型机器人实验室负责人,论文资深作者KevinChen表示:“如果你想到大型机器人,它们可以使用许多不同的工具进行通信——蓝牙、无线等等。但对于一个小型、功率受限的机器人,我们不得不考虑新的通信模式。这是在我们没有经过良好调整的最先进运动跟踪系统的户外环境中驾驶这些机器人迈出的重要一步”。他和他的同事通过将微小的电致发光粒子嵌入人造肌肉中来实现这一点。这个过程仅增加了2.5%的重量,而不会影响机器人的飞行性能。PC版:https://www.cnbeta.com/articles/soft/1303255.htm手机版:https://m.cnbeta.com/view/1303255.htm

封面图片

微型机器人有朝一日能在你体内穿梭

用纳米机器人杀死癌细胞的时代也许并不遥远了。美国科罗拉多大学的研究人员在《Small》期刊上报告了他们研发的自推进微型机器人,能在液体中高速前进。微型机器人只有20微米宽,只有头发丝宽度的几分之一,能以每秒3毫米的速度前进,每分钟行进距离相当于自身长度的3000倍,相比较而言比猎豹快得多。研究人员部署了一队微型机器人将类固醇药物地塞米松输送到实验鼠的膀胱。结果表明微型机器人有可能成为治疗人类膀胱疾病和其它疾病的有用工具。()频道:@TestFlightCN

封面图片

研究人员利用革命性的微型机器人治愈了小鼠的肺炎

研究人员利用革命性的微型机器人治愈了小鼠的肺炎据BGR报道,科学家们已经成功利用微型机器人来治疗小鼠的肺炎。这项发展在《自然材料》杂志上发表的研究中得到了详细说明。在这项研究中,研究人员说,“生物启发的微型机器人”可以在体内移动,处理与某些疾病有关的不同微生物。PC版:https://www.cnbeta.com/articles/soft/1322471.htm手机版:https://m.cnbeta.com/view/1322471.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人