别只用来发电了太阳能制氢突破!10倍效率成本还更低#抽屉IT

None

相关推荐

封面图片

太阳能“裂水制氢”突破:效率是同类装置10倍 成本还更低

太阳能“裂水制氢”突破:效率是同类装置10倍成本还更低几十年来,世界各地的研究人员一直在寻找利用太阳能来生产清洁能源氢的方法,即分解水分子形成氢和氧的方法。然而,这些努力大多以失败告终,因为成本太高,而试图以低成本完成的工艺往往又效果不佳。但研究人员称,这款全新装置最大的好处是降低了可持续氢的成本。这是通过缩小半导体来实现的,半导体通常是设备中最昂贵的部分。该团队的自修复半导体器件可以承受相当于160个太阳的强光。研究成果已于近期发表在了《自然》杂志上。“最终,我们相信人工光合作用设备将比自然光合作用更有效,这将为实现碳中和提供一条途径,”密歇根大学电气和计算机工程教授ZetianMi说。据研究人员介绍称,这一突出成果来自两个方面的进展。第一个是在不破坏半导体器件的情况下,承受高强光的照射。“与一些只在低光强度下工作的半导体相比,我们将半导体的尺寸减小了100多倍,”密歇根大学电气和计算机工程研究员、该研究的第一作者PengZhou说。,“用我们的技术生产氢气可能会非常便宜。”第二个是新装置能利用太阳光谱中能量较高的部分来分解水,同时利用光谱中能量较低的部分来提供热量来促进反应。这种“魔力”是由一种半导体催化剂实现的,这种催化剂在利用阳光驱动化学反应时,会随着使用而自我修复,减轻催化剂通常会经历的退化反应。具体而言,这种催化剂由氮化铟镓纳米结构制成,生长在硅表面。半导体晶片捕获光线,将其转化为自由电子和空穴。纳米结构中布满了直径为1/2000毫米的纳米级金属球,利用这些电子和空穴来帮助引导反应。面板上有一层简单的绝缘层,将温度保持在75摄氏度的舒适温度,温度足以促进分解反应,同时这个温度也能使半导体催化剂发挥良好作用。在室外版本的实验(阳光和温度难以把控)中,将太阳能转化为氢燃料的效率达到了6.1%。而在室内,该系统的效率达到了9%的效率。值得一提的是,研究人员指出,除了处理高光强度外,它还可以在通常对半导体不利的高温下更好地工作。高温加速了水的分解过程,额外的热量也促使氢和氧保持分离,而不是重新结合并再次形成水。这两种方法都帮助研究小组收获了更多的氢气。未来,该团队打算解决的下一个挑战是进一步提高效率,并实现可以直接输入燃料电池的超高纯度氢。...PC版:https://www.cnbeta.com.tw/articles/soft/1337921.htm手机版:https://m.cnbeta.com.tw/view/1337921.htm

封面图片

绿氢技术大突破!MIT新系统效率破纪录 成本料更低

绿氢技术大突破!MIT新系统效率破纪录成本料更低如今,氢气主要是利用天然气和其他化石燃料作为能源而进行生产的,这使得从生产开始到最终使用,这种原本绿色的燃料更像是一种“灰色”能源。相比之下,STCH提供了一种完全零排放的替代方案,因为它完全依赖可再生太阳能来驱动氢的生产。然而,到目前为止,现有的STCH设计效率有限:只有大约7%的射入阳光被用来制造氢气。迄今为止的结果是低产量和高成本。麻省理工学院的研究小组估计,他们的新设计可以利用高达40%的太阳热量来产生更多的氢气,这是实现太阳能燃料的一大步。效率的提高可以降低系统的总体成本,使STCH成为一个潜在的可扩展的、负担得起的选择,以帮助运输行业脱碳。该研究的主要作者AhmedGhoniem教授表示,“我们认为氢是未来的燃料,有必要廉价、大规模地生产氢。我们正在努力实现能源部的目标,即到2030年以每公斤1美元的价格生产绿色氢。为了提高经济效益,我们必须提高效率,并确保我们收集的大部分太阳能用于生产氢气。”具体而言,与其他提出的设计类似,MIT的系统将与现有的太阳能热源相结合,比如聚光太阳能发电厂(CSP)——一个由数百面镜子组成的圆形阵列,收集阳光并将其反射到中央接收塔。然后STCH系统吸收接收器的热量并引导其分解水并产生氢气。值得注意的事,这个过程与电解非常不同,电解使用电而不是热来分解水。概念性STCH系统的核心是两步热化学反应。在第一步中,水以蒸汽的形式暴露在金属中。这使得金属从蒸汽中吸收氧气,留下氢气。这种金属“氧化”类似于铁在水中的生锈,但发生的速度要快得多。一旦氢被分离,氧化(或生锈)的金属在真空中重新加热,这可以逆转生锈过程并使金属再生。除去氧气后,金属可以冷却并再次暴露在蒸汽中以产生更多的氢。这个过程可以重复数百次。每个反应堆将首先通过一个热站,在那里它将暴露在高达1500摄氏度的太阳热量下。这种极端的高温会有效地将氧气从反应堆的金属中抽出。然后,这种金属将处于“还原”状态——准备从蒸汽中吸收氧气。为了实现这一目标,反应堆将转移到一个温度在1000摄氏度左右的较冷的站,在那里它将暴露在蒸汽中产生氢气。研究人员对概念设计进行了详细的模拟,发现它将显著提高太阳能热化学制氢的效率,从之前设计的7%提高到40%。“我们必须考虑系统中的每一点能量,以及如何使用它,以最大限度地降低成本,”Ghoniem说,“通过这种设计,我们发现一切都可以通过来自太阳的热量来提供动力。它能够利用40%的太阳热量来产生氢气。”明年,该团队将建立一个系统的原型,他们计划在目前资助该项目的能源部实验室的集中太阳能发电设施中进行测试。...PC版:https://www.cnbeta.com.tw/articles/soft/1394287.htm手机版:https://m.cnbeta.com.tw/view/1394287.htm

封面图片

新技术大幅提高柔性太阳能电池的发电效率

新技术大幅提高柔性太阳能电池的发电效率研究人员通过引入"客体"成分,提高了三元有机太阳能电池的效率。这种改性可改善太阳能电池对阳光的吸收,优化太阳能电池的运行。通过对这种客体成分进行战略性放置和改性,他们实现了超过19%的功率转换效率提升。有机与无机太阳能电池有机光伏太阳能电池(OSC)是一种使用有机材料(通常由小分子或聚合物组成)将太阳光转化为电能的太阳能电池,有别于使用晶体硅或其他无机材料的传统无机太阳能电池。开放式太阳能电池的主要优点之一是灵活轻便。利用喷墨打印等基于溶液的工艺,它们可以廉价地制成柔性卷筒而非刚性面板,因此适合传感器、便携式充电器或可穿戴电子设备等多种应用。OSC还可以设计成半透明或各种颜色,从而可以美观地集成到建筑物、窗户或其他结构中。不过,与无机太阳能电池相比,开放式晶体管的功率转换效率(PCE)较低。TOSC在一定程度上改变了这一状况。传统的二元有机太阳能电池由供体材料和受体材料组成,与之不同的是,TOSC包含额外的第三种成分,通常称为"客体"。引入这种客体成分是为了优化太阳能电池运行的各个方面,从调整电池的内部能量流到改进电池如何将光能转化为电能。三元组份活性层中嵌入的主/客体"合金"聚集说明。资料来源:李永海客体"成分的作用对于提高PCE尤为重要的是,客体成分还可以拓宽可吸收光的光谱。通过选择一种能在供体或受体未覆盖的范围内吸收光的客体材料,可以提高电池对阳光的整体吸收率。同时,还能很好地调整混合薄膜的形态,使其能够进行激子解离、电荷生成和传输。鉴于客体成分可以发挥多种不同的功能,其在太阳能电池'三明治'或矩阵中的具体位置可以从根本上改变性能。该研究的合著者李永海说:"根据其位置的不同,客体元件既可以以闪电般的速度传输能量,也可以帮助捕捉更多的阳光。"现有三种不同位置的可能性:嵌入供体材料,嵌入受体材料,或以某种方式分散在供体和受体界面之间,形成混合的合金状结构(聚集体)。但到目前为止,人们还很少关注客体成分的位置问题。实验细节和结果在研究中,研究人员在TOSC中使用了一种名为LA1的客体成分(与其他客体成分材料的结晶度不同)。LA1是一种小分子受体,研究人员用苯基烷基侧链对其进行了修饰--苯基烷基侧链是一种官能团(分子中原子的集合,具有自身的一系列特性),常用于设计用于光伏设备的有机材料。用苯基烷基侧链对LA1进行改性,在保持令人满意的兼容性的同时,改善了其结晶度和排列,从而提高了其在TOSC中的性能。此外,研究人员还通过对与主成分相互作用的各种条件(包括主/客体相容性、表面能、结晶动力学和分子间相互作用)进行调控,来调节客体成分的分布。通过这种方法,他们在大多数客体分子中发现了类似合金的聚集体,这些聚集体也渗透并分散到宿主分子中。令人印象深刻的是,这些嵌入式主/客"合金"的结晶尺寸可以很容易地进行微调,以改善电荷传输和抑制电荷重组。因此,研究人员最初能够实现15%以上的PCE增效,然后通过将客体成分与作为主成分的Y6系列受体相结合,他们实现了19%以上的更大增效。研究人员认为,他们已经取得了相当大的实验成功,但这些增益的驱动力在理论上仍然不太清楚。展望未来,研究人员希望能更好地阐明这些基本机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1382215.htm手机版:https://m.cnbeta.com.tw/view/1382215.htm

封面图片

硅钙钛矿太阳能电池即将彻底改变发电效率

硅钙钛矿太阳能电池即将彻底改变发电效率钙钛矿是一类与钙钛氧化物矿物具有相同晶体结构的化合物。这种高度灵活的材料可用于多种应用,包括超声波机器、存储芯片和发电太阳能电池。最近的研究表明,钙钛矿可能是推动太阳能电池行业发电效率达到新水平的“秘密武器”。目前的太阳能电池技术正在迅速接近其最高效率水平,但仍达不到太阳能作为应对全球变暖的重要缓解因素所需的水平。科学家表示,效率必须超过30%,且新太阳能电池板的安装率必须比目前的采用水平提高十倍。通过在硅基底上添加额外的钙钛矿层(两者都具有半导体特性),可以增强从阳光中捕获的能量。硅层捕获红光中的电子,而钙钛矿层捕获蓝光。能量吸收能力的提高将导致太阳能整体价格的降低,从而加快太阳能电池板的部署和采用。科学家们花费数年时间开发高效的硅钙钛矿太阳能电池技术,2023年似乎将标志着该领域的一个重要里程碑。最近的研究进展已成功将硅-钙钛矿串联电池的效率提高到30%以上。进展速度如此之快,以至于这项技术很快就会在商用产品中展示其增强的功能。沙特阿拉伯阿卜杜拉国王科技大学材料科学与工程教授StefaanDeWolf认为,2023年太阳能电池技术领域将带来重大进展。DeWolf的团队已经在硅钙钛矿太阳能电池中实现了33.7%的效率水平,但他们的工作细节仍需要在科学期刊上发表。另一个由德国亥姆霍兹柏林材料与能源中心的SteveAlbrecht领导的研究小组最近发表了一项关于串联硅钙钛矿电池的研究,该电池可以实现高达32.5%的功率转换效率。由瑞士洛桑联邦理工学院的XinYuChin领导的第三个小组已经证明,串联电池的效率达到31.25%,具有“高效率和低制造成本的潜力”。DeWolf表示,超过30%的能源门槛将增强人们对“高性能、低成本光伏发电可以推向市场”的信心。到2022年,太阳能发电容量将达到1.2太瓦(TW),到2050年必须增加到至少75太瓦,才能缓解全球变暖和温室气体排放带来的最灾难性的情况。商业领域正在积极致力于提高太阳能电池的效率。中国最大的制造商(隆基股份)在实验室中已经达到了33.5%的效率。下一步涉及将高效硅钙钛矿串联电池的尺寸从实验条件(1平方厘米)扩大到商业级特征(15平方厘米)。DeWolf对实现这一目标充满信心。...PC版:https://www.cnbeta.com.tw/articles/soft/1370097.htm手机版:https://m.cnbeta.com.tw/view/1370097.htm

封面图片

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源革命性的光反应器设计阿迪提亚-莫希特(AdityaMohite)的实验室专门从事化学和生物分子工程研究,是建造这种集成光反应器的领头人。该装置设计中的一个关键因素是防腐蚀屏障,它能有效地将半导体与水隔绝,同时又不妨碍电子转移。据发表在《自然-通讯》(NatureCommunications)上的研究报告称,该装置的太阳能-氢气转换效率高达20.8%,令人印象深刻。莱斯大学莫希特研究小组及其合作者开发的光反应器实现了20.8%的太阳能-氢气转换效率。资料来源:GustavoRaskosky/莱斯大学奥斯汀-费尔(AustinFehr)是一名化学与生物分子工程博士生,也是这项研究的主要作者之一,他强调了这项工作的重要性:"利用阳光作为能源生产化学品是实现清洁能源经济的最大障碍之一。我们的目标是建立经济上可行的平台,生成太阳能衍生燃料。在这里,我们设计了一种能吸收光线并在其表面完成电化学分水化学反应的系统。"这种装置被称为光电化学电池,因为光的吸收、转化为电能以及利用电能为化学反应提供动力都发生在同一个装置中。迄今为止,利用光电化学技术生产绿色氢气一直受到效率低和半导体成本高的阻碍。样本视频中的四张系列静态图片,展示了莱斯大学的光反应器如何在模拟阳光的刺激下分裂水分子并产生氢气。资料来源:莫希特实验室/莱斯大学费尔解释了他们发明的与众不同之处:"所有这种类型的设备都只利用阳光和水产生绿色氢气,但我们的设备很特别,因为它的效率破了纪录,而且使用的半导体非常便宜。"莫希特实验室及其合作者通过将他们极具竞争力的太阳能电池转化为反应器,利用收集到的能量将水分离成氧气和氢气,从而创造出了这一装置。他们必须克服的挑战是,卤化物过氧化物晶石在水中极不稳定,用于绝缘半导体的涂层最终不是破坏了它们的功能,就是损坏了它们。AyushAgrawal(左起)、FaizMandani和AustinFehr图片来源:GustavoRaskosky/莱斯大学"在过去的两年里,我们反反复复尝试了不同的材料和技术,"这项研究的合著者、莱斯大学化学工程师迈克尔-王(MichaelWong)说。在漫长的试验未能取得预期效果后,研究人员终于找到了一个成功的解决方案。Fehr说:"我们的主要见解是,你需要两层屏障,一层用来阻挡水,一层用来在过氧化物层和保护层之间实现良好的电接触。我们的成果是无太阳能浓缩的光电化学电池中效率最高的,也使用卤化物包晶石半导体的光电化学电池中整体效率最高的。"对于一个历来由昂贵得令人望而却步的半导体所主导的领域来说,这是一个创举,它可能代表了有史以来第一次实现这类设备商业可行性的途径。研究人员介绍说,他们的阻挡层设计适用于不同的反应和不同的半导体,因此适用于许多系统。莫希特小组介绍说:"我们希望这样的系统能成为一个平台,利用丰富的原料,只需阳光作为能量输入,就能驱动各种电子进行燃料形成反应。"Fehr补充说:"随着稳定性和规模的进一步提高,这项技术可以开启氢经济,改变人类从化石燃料到太阳能燃料的制造方式。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372527.htm手机版:https://m.cnbeta.com.tw/view/1372527.htm

封面图片

谢展寰料电费未来几年可控于通胀升幅内 太阳能发电成本较核电高

谢展寰料电费未来几年可控于通胀升幅内太阳能发电成本较核电高两电明年下调净电费,环境及生态局局长谢展寰出席本台节目《星期六问责》时表示,两电未来5年发展计划开支比上个5年期少,基本电价加幅或比以往低,相信未来几年一定可以控制于通胀升幅内。他强调,根据协议,两电有关投资须经当局批准,政府会平衡价钱等因素,为市民作出最有利的选择。至于可再生能源的发展,谢展寰说,兴建海上风场或透过太阳能发电的成本比发展核电高,强调并非「偏心」核电。他指出,太阳能板很便宜,但需要其他配套,否则不能稳定提供电力,涉及的成本比使用核电高,因此不能借此作为发电基地。2023-12-0908:53:27

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人