破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源革命性的光反应器设计阿迪提亚-莫希特(AdityaMohite)的实验室专门从事化学和生物分子工程研究,是建造这种集成光反应器的领头人。该装置设计中的一个关键因素是防腐蚀屏障,它能有效地将半导体与水隔绝,同时又不妨碍电子转移。据发表在《自然-通讯》(NatureCommunications)上的研究报告称,该装置的太阳能-氢气转换效率高达20.8%,令人印象深刻。莱斯大学莫希特研究小组及其合作者开发的光反应器实现了20.8%的太阳能-氢气转换效率。资料来源:GustavoRaskosky/莱斯大学奥斯汀-费尔(AustinFehr)是一名化学与生物分子工程博士生,也是这项研究的主要作者之一,他强调了这项工作的重要性:"利用阳光作为能源生产化学品是实现清洁能源经济的最大障碍之一。我们的目标是建立经济上可行的平台,生成太阳能衍生燃料。在这里,我们设计了一种能吸收光线并在其表面完成电化学分水化学反应的系统。"这种装置被称为光电化学电池,因为光的吸收、转化为电能以及利用电能为化学反应提供动力都发生在同一个装置中。迄今为止,利用光电化学技术生产绿色氢气一直受到效率低和半导体成本高的阻碍。样本视频中的四张系列静态图片,展示了莱斯大学的光反应器如何在模拟阳光的刺激下分裂水分子并产生氢气。资料来源:莫希特实验室/莱斯大学费尔解释了他们发明的与众不同之处:"所有这种类型的设备都只利用阳光和水产生绿色氢气,但我们的设备很特别,因为它的效率破了纪录,而且使用的半导体非常便宜。"莫希特实验室及其合作者通过将他们极具竞争力的太阳能电池转化为反应器,利用收集到的能量将水分离成氧气和氢气,从而创造出了这一装置。他们必须克服的挑战是,卤化物过氧化物晶石在水中极不稳定,用于绝缘半导体的涂层最终不是破坏了它们的功能,就是损坏了它们。AyushAgrawal(左起)、FaizMandani和AustinFehr图片来源:GustavoRaskosky/莱斯大学"在过去的两年里,我们反反复复尝试了不同的材料和技术,"这项研究的合著者、莱斯大学化学工程师迈克尔-王(MichaelWong)说。在漫长的试验未能取得预期效果后,研究人员终于找到了一个成功的解决方案。Fehr说:"我们的主要见解是,你需要两层屏障,一层用来阻挡水,一层用来在过氧化物层和保护层之间实现良好的电接触。我们的成果是无太阳能浓缩的光电化学电池中效率最高的,也使用卤化物包晶石半导体的光电化学电池中整体效率最高的。"对于一个历来由昂贵得令人望而却步的半导体所主导的领域来说,这是一个创举,它可能代表了有史以来第一次实现这类设备商业可行性的途径。研究人员介绍说,他们的阻挡层设计适用于不同的反应和不同的半导体,因此适用于许多系统。莫希特小组介绍说:"我们希望这样的系统能成为一个平台,利用丰富的原料,只需阳光作为能量输入,就能驱动各种电子进行燃料形成反应。"Fehr补充说:"随着稳定性和规模的进一步提高,这项技术可以开启氢经济,改变人类从化石燃料到太阳能燃料的制造方式。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372527.htm手机版:https://m.cnbeta.com.tw/view/1372527.htm

相关推荐

封面图片

太阳能新技术利用粪便制造氢燃料 转化率高达35%

太阳能新技术利用粪便制造氢燃料转化率高达35%氢基燃料是最有前途的清洁能源之一。但生产纯氢气是一个能源密集型过程,通常需要煤或天然气以及大量电力。在《细胞报告物理科学》(CellReportsPhysicalScience)杂志的一篇论文中,由UIC工程师MeeneshSingh领导的一个多机构团队揭示了绿色制氢的新工艺。这种方法利用一种名为生物炭的富碳物质来减少将水转化为氢气所需的电量。通过使用太阳能或风能等可再生能源,并将副产品用于其他用途,该工艺可将温室气体排放量降至净零。化学工程系副教授辛格说:"我们是第一个证明可以利用生物物质在几分之一伏特的条件下生产氢气的小组。这是一项变革性技术。"用于制造清洁氢气的生物炭。资料来源:ennyFontaine/UIC电解是将水分离成氢和氧的过程,需要电流。在工业规模上,通常需要化石燃料来产生这种电力。最近,科学家们通过在反应中引入碳源,降低了水分裂所需的电压。但这一过程也要使用煤或昂贵的化学品,并释放出二氧化碳作为副产品。辛格及其同事对这一工艺进行了改进,改用普通废品中的生物质。通过将硫酸与农业废弃物、动物粪便或污水混合,他们制造出一种名为生物炭的泥浆状物质,这种物质富含碳。研究小组试验了由甘蔗皮、大麻废料、废纸和牛粪制成的不同种类的生物炭。加入电解室后,所有五种生物炭都降低了将水转化为氢气所需的功率。其中表现最好的是牛粪,可将所需电力降低六倍,约为五分之一伏特。伊利诺伊大学芝加哥分校副教授MeeneshSingh(右)和博士后研究员RohitChauhan在Singh的实验室工作。图片来源:JennyFontaine/UIC由于对能量的要求很低,研究人员可以用一个标准硅太阳能电池在0.5伏电压下产生大约15毫安的电流为反应提供能量。这还不及一节AA电池产生的电量。辛格实验室的合著者和博士后学者罗希特-乔汉(RohitChauhan)说:"它的效率非常高,生物炭和太阳能几乎有35%转化为氢气。这些数字创下了世界纪录;这是任何人展示过的最高数字。"要使这一过程实现净零排放,就必须捕获反应产生的二氧化碳。但辛格说,这也会带来环境和经济效益,比如生产纯二氧化碳来碳酸饮料,或将其转化为乙烯和塑料制造中使用的其他化学品。"它不仅实现了生物废料利用的多样化,还能清洁生产氢气以外的不同化学物质,"论文共同第一作者、美国加州大学伯克利分校(UIC)毕业生尼希坦-卡尼(NishithanKani)说。"这种廉价的制氢方式可以让农民自给自足地满足他们的能源需求,或者创造新的收入来源"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433564.htm手机版:https://m.cnbeta.com.tw/view/1433564.htm

封面图片

太阳能碟形反应器可生产氢气并捕获废品

太阳能碟形反应器可生产氢气并捕获废品EPFL的反应器看起来像一个卫星天线,它的工作原理也很相似--大的弧形表面区域收集尽可能多的光线,并将其集中到悬浮在中间的小装置上。在这种情况下,碟子正在收集来自太阳的热量,并将其以大约800倍的速度集中到一个光电化学反应器上。水被泵入这个反应器,在那里太阳能被用来将其分子分成氢和氧。EPFL新的太阳能制氢系统的核心反应器该反应器还捕捉了该过程中通常只是被释放的两种废品--氧气和热量。氧气可以方便地用于医院或工业用途,而热量则可以通过一个热交换器,可用于加热水或建筑物的内部。该反应器于2020年8月和2021年2月和3月在EPFL校园进行了13天的测试,以了解它在不同天气条件下的工作情况。它的太阳能转化为氢气的效率被发现平均超过20%,每天产生约500克(1.1磅)的氢气。该团队说,有了这样的产出,在一年中,该系统可以为1.5辆驾驶平均距离的氢燃料电池车提供动力,或者为一个四人家庭提供大约一半的电力需求。该研究的通讯作者SophiaHaussener说:"随着输出功率超过2千瓦,我们已经破解了我们试点反应器的1千瓦上限,同时保持了这种大规模的创纪录的高效率。在这项工作中取得的产氢率代表了向这项技术的商业实现迈出了真正令人鼓舞的一步"。研究人员说,下一步是在一个金属生产厂建立一个几百千瓦的示范工厂,氢气将用于金属退火,热量用于热水,收集的氧气用于附近医院。这项研究发表在《自然-能源》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1355379.htm手机版:https://m.cnbeta.com.tw/view/1355379.htm

封面图片

太阳能“裂水制氢”突破:效率是同类装置10倍 成本还更低

太阳能“裂水制氢”突破:效率是同类装置10倍成本还更低几十年来,世界各地的研究人员一直在寻找利用太阳能来生产清洁能源氢的方法,即分解水分子形成氢和氧的方法。然而,这些努力大多以失败告终,因为成本太高,而试图以低成本完成的工艺往往又效果不佳。但研究人员称,这款全新装置最大的好处是降低了可持续氢的成本。这是通过缩小半导体来实现的,半导体通常是设备中最昂贵的部分。该团队的自修复半导体器件可以承受相当于160个太阳的强光。研究成果已于近期发表在了《自然》杂志上。“最终,我们相信人工光合作用设备将比自然光合作用更有效,这将为实现碳中和提供一条途径,”密歇根大学电气和计算机工程教授ZetianMi说。据研究人员介绍称,这一突出成果来自两个方面的进展。第一个是在不破坏半导体器件的情况下,承受高强光的照射。“与一些只在低光强度下工作的半导体相比,我们将半导体的尺寸减小了100多倍,”密歇根大学电气和计算机工程研究员、该研究的第一作者PengZhou说。,“用我们的技术生产氢气可能会非常便宜。”第二个是新装置能利用太阳光谱中能量较高的部分来分解水,同时利用光谱中能量较低的部分来提供热量来促进反应。这种“魔力”是由一种半导体催化剂实现的,这种催化剂在利用阳光驱动化学反应时,会随着使用而自我修复,减轻催化剂通常会经历的退化反应。具体而言,这种催化剂由氮化铟镓纳米结构制成,生长在硅表面。半导体晶片捕获光线,将其转化为自由电子和空穴。纳米结构中布满了直径为1/2000毫米的纳米级金属球,利用这些电子和空穴来帮助引导反应。面板上有一层简单的绝缘层,将温度保持在75摄氏度的舒适温度,温度足以促进分解反应,同时这个温度也能使半导体催化剂发挥良好作用。在室外版本的实验(阳光和温度难以把控)中,将太阳能转化为氢燃料的效率达到了6.1%。而在室内,该系统的效率达到了9%的效率。值得一提的是,研究人员指出,除了处理高光强度外,它还可以在通常对半导体不利的高温下更好地工作。高温加速了水的分解过程,额外的热量也促使氢和氧保持分离,而不是重新结合并再次形成水。这两种方法都帮助研究小组收获了更多的氢气。未来,该团队打算解决的下一个挑战是进一步提高效率,并实现可以直接输入燃料电池的超高纯度氢。...PC版:https://www.cnbeta.com.tw/articles/soft/1337921.htm手机版:https://m.cnbeta.com.tw/view/1337921.htm

封面图片

麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料

麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料在最近发表在《太阳能杂志》上的一项研究中,工程师们阐述了一个可以高效生产"太阳能热化学氢"的系统的概念设计。该系统利用太阳的热量直接分裂水并产生氢气,这是一种清洁燃料,可为长途卡车、轮船和飞机提供动力,同时在此过程中不会排放任何温室气体。如今,氢主要是通过涉及天然气和其他化石燃料的工艺生产出来的,从生产开始到最终使用的整个过程来看,这种原本绿色的燃料更像是一种"灰色"能源。相比之下,太阳能热化学制氢(STCH)提供了一种完全无排放的替代能源,因为它完全依靠可再生的太阳能来驱动制氢。但迄今为止,现有的STCH设计效率有限:只有大约7%的太阳光被用来制氢,其结果是产量低、成本高。麻省理工学院的工程师们设计出了一种能有效利用太阳热能分水制氢的系统。图片来源:AhmedGhoniem、AniketPatankar等人提供麻省理工学院的研究小组估计,他们的新设计可以利用多达40%的太阳热能生成更多的氢气,这是向实现太阳能燃料迈出的一大步。效率的提高可以降低系统的总体成本,使STCH成为一种潜在的、可扩展的、经济实惠的选择,帮助交通行业实现去碳化。这项研究的第一作者、麻省理工学院机械工程罗纳德-C-克兰(RonaldC.Crane)教授艾哈迈德-高尼姆(AhmedGhoniem)说:"我们认为氢是未来的燃料,因此需要廉价、大规模地生成氢。我们正在努力实现能源部的目标,即到2030年以每公斤1美元的价格制造出绿色氢气。为了提高经济效益,我们必须提高效率,确保我们收集的大部分太阳能都用于制氢。"Ghoniem的研究合著者包括:第一作者、麻省理工学院博士后AniketPatankar;麻省理工学院材料科学与工程教授HarryTuller;滑铁卢大学的Xiao-YuWu;以及韩国梨花女子大学的WonjaeChoi。太阳能站与其他拟议的设计类似,麻省理工学院的系统将与现有的太阳能热源配对,例如聚光太阳能发电站(CSP)--一个由数百面镜子组成的圆形阵列,收集阳光并反射到中央接收塔。然后,STCH系统会吸收接收器的热量,并将其用于分裂水和产生氢气。这一过程与电解法截然不同,后者利用电能而不是热能来分裂水。概念STCH系统的核心是一个两步热化学反应。第一步,水以蒸汽的形式接触金属。这使得金属从蒸汽中吸收氧气,留下氢气。这种金属"氧化"类似于铁在水中生锈,但速度更快。一旦氢被分离出来,氧化(或生锈)的金属就会在真空中重新加热,从而逆转生锈过程并使金属再生。除去氧气后,金属可以冷却并再次暴露在蒸汽中以产生更多的氢。这个过程可以重复数百次。MIT研究人员设计的系统旨在优化这一过程。整个系统就像一列在环形轨道上运行的箱形反应器。在实践中,这条轨道将环绕一个太阳能热源(如CSP塔)设置。列车上的每个反应器都将容纳进行氧化还原或可逆生锈过程的金属。每个反应器将首先经过一个热站,在那里暴露在高达1500摄氏度的太阳热量下。这种极端高温会有效地从反应堆的金属中抽出氧气。这样,金属就会处于"还原"状态--随时准备从蒸汽中获取氧气。为此,反应堆将转移到温度约为1000摄氏度的冷却站,在那里接触蒸汽以产生氢气。铁锈和铁轨其他类似的STCH概念都遇到了一个共同的障碍:如何处理反应堆冷却时释放出的热量。如果不对这些热量进行回收和再利用,系统的效率就会很低,无法实用。第二个挑战是如何创造一个高能效的真空环境,使金属能够除锈。一些原型利用机械泵产生真空,但对于大规模氢气生产来说,这种泵能耗太高,成本太高。为了应对这些挑战,麻省理工学院的设计采用了几种节能变通方法。为了回收从系统中逸出的大部分热量,圆形轨道两侧的反应器可以通过热辐射交换热量;热的反应器被冷却,冷的反应器被加热。这样就能将热量保持在系统内。研究人员还增加了第二组反应堆,它们将围绕第一列反应堆以相反的方向移动。这列外反应器的运行温度通常较低,用于从较热的内反应器中排出氧气,而无需使用耗能的机械泵。这些外层反应堆将装载第二种也很容易氧化的金属。当它们环绕一圈时,外层反应堆将吸收内层反应堆中的氧气,有效地去除原有金属的锈迹,而无需使用耗能的真空泵。两组反应堆将连续运行,分别产生纯氢和纯氧。研究人员对这一概念设计进行了详细模拟,发现它将显著提高太阳能热化学制氢的效率,从以前设计所证明的7%提高到40%。Ghoniem说:"我们必须考虑到系统中的每一点能量,以及如何使用这些能量,从而最大限度地降低成本。有了这个设计,我们发现一切都可以用来自太阳的热量来驱动。它能够利用40%的太阳热能生产氢气。"明年,该团队将建造一个系统原型,计划在能源部实验室的聚光太阳能设施中进行测试。Patankar解释说:"该系统完全投入使用后,将被安置在太阳能发电场中间的一座小楼里。建筑物内可以有一列或多列火车,每列火车上有大约50个反应堆。我们认为这可以是一个模块化系统,你以在传送带上增加反应器,从而扩大氢气生产规模。"...PC版:https://www.cnbeta.com.tw/articles/soft/1393517.htm手机版:https://m.cnbeta.com.tw/view/1393517.htm

封面图片

全新的太阳能反应器可将二氧化碳和塑料废料转化为有用的产品

全新的太阳能反应器可将二氧化碳和塑料废料转化为有用的产品大气层中的二氧化碳处于几千年来的最高水平,导致了破坏性的气候后果。同时,我们对塑料的依赖正在导致河流、海洋和从一极到另一极的所有地方都有这种东西的大量堆积。在这两个领域的研究已经促使科学家们设计出反应器,将捕获的二氧化碳或塑料废物转化为油、燃料和其他有用的化学品和材料。但是现在,剑桥大学的科学家们已经设计出第一个可以同时处理两种污染物的反应器。该装置由两个独立的隔间组成--一个用于处理塑料,一个用于处理二氧化碳--以及每个隔间中的一个单元,该单元吸收光的能量并利用它来触发一个催化剂,将原料转化为更有用的东西。光吸收器是过氧化物,它正在成为一种有前途的太阳能电池材料,而催化剂可以根据所需的最终产品来改变。该研究的共同第一作者MotiarRahaman博士说:"一般来说,二氧化碳的转化需要大量的能量,但在我们的系统中,基本上你只需向它照射一束光,它就会开始将有害的产品转化为有用和可持续的东西。在这个系统之前,我们没有任何东西可以有选择地和有效地制造高价值的产品"。在测试中,研究小组证明了该反应器可以在正常温度和压力条件下有效地工作,只使用阳光作为能源。一种铜钯合金催化剂能够将PET塑料瓶转化为乙醇酸,这是一种用于化妆品行业的化学品。使用一种钴化合物将二氧化碳转化为一氧化碳,使用一种铜铟合金将合成气转化为一氧化碳,使用一种特定的酶将甲酸盐转化为一氧化碳。更妙的是,该反应器的工作非常高效。该团队说,其生产效率比使用其他太阳能催化剂的设备高100倍。接下来的步骤是在未来五年内进一步开发该反应器,以生产更复杂的分子。这项研究的共同第一作者SubhajitBhattacharjee说:"这个系统的特别之处在于它的多功能性和可调控性--我们现在正在制造相当简单的碳基分子,但在将来,我们可以通过改变催化剂来调控这个系统以制造更复杂的产品。"这项研究发表在《自然合成》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1338505.htm手机版:https://m.cnbeta.com.tw/view/1338505.htm

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到180.9mmolgcat-1h-1,选择性达到96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+light=2CO+2H2)的应用。该研究提出,用O部分取代InGaN中的N可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性InGaN纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431408.htm手机版:https://m.cnbeta.com.tw/view/1431408.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人