Sycamore:一个对话式搜索和分析平台,适用于复杂的非结构化数据,例如文档、演示文稿、成绩单、嵌入式表格和内部知识存储库。
:一个对话式搜索和分析平台,适用于复杂的非结构化数据,例如文档、演示文稿、成绩单、嵌入式表格和内部知识存储库。它通过将人工智能引入数据准备、索引和检索来检索和综合高质量的答案。Sycamore可以轻松准备用于搜索和分析的非结构化数据,提供用于数据清理、信息提取、丰富、汇总和生成封装数据语义的向量嵌入的工具包。Sycamore使用你选择的生成式AI模型来使这些操作变得简单而有效,并且可以实现快速实验和迭代。此外,Sycamore使用OpenSearch进行索引,支持混合(向量+关键字)搜索、检索增强生成(RAG)管道、过滤、分析功能、会话记忆和其他功能来改进信息检索。特征自然语言、对话界面,可针对非结构化数据提出复杂问题。包括对来源段落和对话记忆的引用。包括对非结构化数据的各种查询操作,包括混合搜索、检索增强生成(RAG)和分析函数。通过高级数据分段、用于数据丰富的LLM支持的UDF、使用Python进行的高性能数据操作以及使用各种AI模型的向量嵌入,准备和丰富用于搜索和分析的复杂非结构化数据。自动数据爬虫(AmazonS3和HTTP)和Jupyter笔记本支持等有用的功能可用于创建和迭代数据准备脚本。可扩展、安全且可定制的OpenSearch后端,用于索引和数据检索。