〔疫下百态〕女子阳了之后长胡子人类的基因正在被无序地改变中欢迎您加入『』

None

相关推荐

封面图片

By:6000#frth#视频转可以#搞笑#满级#牛逼@人类百态行为

封面图片

ChatGPT之后 人类又打开了“基因编辑”魔盒

ChatGPT之后人类又打开了“基因编辑”魔盒就在上个月,基因编辑在商业化领域的大门终被捅破——Vertex和CRISPR联合宣布CRISPR/Cas9基因编辑疗法(商品名:Casgevy)在英国获批上市,用于输血依赖性β-地中海贫血患者。而在上周五(12月8日),FDA(美国食品药品监督管理局)正式步英国后尘,批准Casgevy上市。同一天,适应症与Casgevy具有重合性的,由bluebirdbio开发的基因编辑疗法Lyfgenia,同样获批。当基因编辑疗法开始在全球最大的创新药市场获得审批许可,这意味着,2023年岁末,人类已实质性地启动了“基因编辑”时代……福兮祸兮?01天使的手术刀基因是一段带有遗传信息的DNA片段,储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息,支撑着生命的基本构造和性能。顾名思义,基因编辑技术是一种定向改造DNA基因序列的技术。通过这项技术,人类理论上可以彻底掌握自身的命运。这项技术的起点源于1953年,沃森与克里克提出了DNA双螺旋结构,由此拉开了现代分子生物学的序幕,第一次将人类认知引入到基因层级。虽然人类发现DNA结构很早,但却在很长一段时间中对基因概念并无太多新的进展,直至20世纪70年代,人类才找到了基因编辑的可能。在研究细菌如何防御噬菌体的过程中,科学家发现细菌中存在一种特殊的酶,它能够降解噬菌体的DNA,从而保护细菌免受噬菌体的侵害,这种酶就是限制性内切酶。基于这一发现,人类开始尝试基因编辑的可能。1996年,美国基因公司SangamoTherapeutics推出了第一代基因编辑技术ZFNs,该技术可以修饰体细胞和多功能干细胞的基因组,但需要设计合成复杂的蛋白模块,构建周期长,步骤繁琐,并且无法实现对任意靶基因的结合。显而易见,如此繁琐的步骤是难以进一步商业变现的。ZFNs出现的13年后,第二代基因编辑技术TALENs问世。与ZFNs相比,虽然蛋白设计进行了简化,但仍需要耗费大量的时间设计和组装。同时,因为过大的体积,在递送到靶细胞方面更为困难,也无法进行高通量基因编辑。复杂的机制让基因编辑的进一步应用受到极大限制,这也为后续迭代路径指明了方向,那就是简便与高效。图:三代基因编辑技术对比,来源:华西证券2012年,两位年轻的女科学家埃曼纽尔·卡彭蒂耶与詹妮弗·杜德纳开发了第三代基因编辑技术CRISPR/Cas。与前两代技术相比,CRISPR/Cas最大的变化在于效率的提升,系统简单、精准、编辑效率高,操作成本低,极大降低了技术门槛,并让基因编辑有望实现临床应用的可能。基于CRISPR/Cas技术的平台价值,卡彭蒂耶与杜德纳在2020年被授予诺贝尔化学奖,而卡彭蒂耶更是在后来创立了CRISPRTherapeutics公司,并朝着临床应用场景进一步迈进。不久前上市的基因疗法Casgevy,正是CRISPR公司的核心产品,而其也成为全世界首款获批上市的CRISPR基因编辑疗法。Casgevy疗法类似于CAR-T疗法,都需要先从患者体内收集细胞,然后送到实验室进行改造,再回输到患者体内,实现疾病的彻底扭转。Casgevy修饰的是患者的造血干细胞,让细胞能产生高水平的胎儿血红蛋白。图:CAR-T疗法与基因疗法,来源:中金公司毫无疑问,Casgevy仅是人类征服基因的开始,理论上通过基因编辑可以治愈所有类型的疾病,尤其是很多先天缺陷的基因疾病,让人们看到了治愈的希望。更有甚者,还曾提出通过编辑衰老基因,让人类返老还童。掌握了基因编辑技术的人类,就好像握住了“天使的手术刀”,拥有了逆天改命的能力。02魔鬼的诱惑当你凝视深渊时,深渊也在凝视你。从发现基因的那一天起,人类就一直想要征服它,因为掌握了基因编辑能力,也就掌握了生命的无限可能,例如可以治愈很多药物无法治疗的基因疾病。自基因编辑技术诞生以来,围绕着其安全性、伦理等方面的争议就从未断过。突破自然的束缚,对于人类来说也未必就是一件好事,依然有太多未知需要探索。基因编辑具有不可逆性,编辑后的细胞在正常分裂后,被编辑的基因也会被继承。也就是说,人类对于基因的改变会一直在后世中流传,如果编辑进了错误或当前看不出错误的基因,那么就会造成基因污染。所以说,基因编辑不仅仅是一个学术问题,更是一个社会问题。在2018年的时候,我国曾发生了一起“基因编辑婴儿”事件。南方科技大学副教授贺建奎对外宣布,通过基因编辑手段,成功改造了一对新生儿,她们在出生时就拥有天生抵抗HIV病毒的能力。可是这并没有引起业界的轰动,反而遭到了国内外逾百名科学家联名发声反对。最终贺建奎以“非法行医罪”被判处有期徒刑3年,并处罚金300万元。产业技术是为人类服务的。如果安全和伦理两大问题无法解决,那么基因编辑的应用势必受限。抛开这两个问题不谈,现阶段想要全面推进基因疗法药物的商业化也有很多现实议题需要直面。比如在应用层面,如脱靶效应、转录效率、运输问题、适用性、长期安全性等问题亟待解决。此外,基因编辑治疗的成本也限制了它的推广,Casgevy的治疗费用可能高达200万美元。总的来看,Casgevy的上市只是基因编辑疗法迈出的商业化第一步。毕竟CRISPR/Cas技术问世才只有11年,未来还有很长的路要走。面对新的问题需要敢于直面,去攻克一个又一个难题,才是人类不断进步的动力。03又一场军备竞赛开场基因编辑技术应用前景广阔,市场潜力巨大,吸引了不少优质的国内外生物科技企业投入研究。即使在2022年的创新药寒冬中,基因治疗领域依然有至少7家公司逆势获得超亿元的大额融资,TesseraTherapeutics更是完成了超3亿美元的超级C轮。面对一级市场如此火热的投资热度,世界各国都在不断完善科技伦理审查制度,防止基因编辑技术被滥用。例如我国2022年发布的《关于加强科技伦理治理的意见》,就是国内首个对于基因编辑提出道德伦理规范的国家层面的文件。可以肯定的是:基因编辑技术的开发及应用将使生物科学发展进入到一个全新的维度,该技术在基因功能研究、药物开发、基因治疗,包括癌症、阿尔茨海默氏症、心血管疾病等领域具有广阔应用前景。但想要让这样的愿景实现,一切关键核心的还是在于人类如何使用这种工具,限制这种工具,而不被它所驱使。截至目前,我国已经有50余家公司涉足基因编辑技术,但这其中依然以初创公司为主,管线研发也多在临床早期。如博雅辑因、邦耀生物、瑞风生物、辉大基因、本导基因等,但这些公司暂时都没有登陆资本市场。由于我国基因编辑公司起步较晚,CRISPR技术的底层知识产权已被西方国家垄断,在技术研发方面依然会面临“卡脖子”的问题。轻则是支付高昂的授权费和版税,重则又会被技术封锁。鉴于基因编辑技术的强大功能,它极有可能成为下一种战略技术。因此不管我们愿不愿意,客观上,创新药赛道又一场重量级军备竞赛,开场了。(作者:青栎医曜)...PC版:https://www.cnbeta.com.tw/articles/soft/1403449.htm手机版:https://m.cnbeta.com.tw/view/1403449.htm

封面图片

哎,或许尝到人世间的百态之后,才懂得最珍贵的东西是什么——来自:很烦

封面图片

武汉洪山区万科广场一女子裸奔女子双手捂脸不顾路过的行人。#社会百态

封面图片

男性基因正在消失?两篇 Nature 揭示人类Y染色体的遗传奥秘……

男性基因正在消失?两篇Nature揭示人类Y染色体的遗传奥秘……不过近期,最新的“长读”测序技术终于揭示了贯穿一整条Y染的完整遗传信息,对数十条来自全球男性的Y染色体实现了全面、可靠地测序。这一艰巨、突破性的工作于今年8月发表在《自然》杂志。同行表示,它将指引我们探索性别基因、精子基因的作用机制,理解Y染色体的进化方式,以及分析它会否如预测那样在几百万年内消失。SRY引导男人长大大约六十年前,我们就已知道有种特殊的染色体决定人类和其他哺乳动物的出生性别。女性有一对X染色体,而男性有一条X染色体和一条体型小得多的Y染色体。Y染色体决定男性性别,因为它携带一种名为SRY的基因,该基因指导胚胎内细胞脊发育成睾丸。胚胎睾丸会产生雄性激素,进而引导男婴男性特征的发育。XX型胚胎没有Y染色体和SRY基因,因此相同的细胞脊会发育成卵巢。然后,雌性激素诱导女婴女性特征的发育。Y染色体是DNA垃圾场?如前文所述,相比X染色体和另外22种常染色体,Y染色体相当独特,体型很小,携带基因也很少——区区27个,要知道X染上有大约1000个基因。Y染色体基因包括SRY、少量指导精子生产的基因、一些似乎对生命至关重要的基因——这些基因里有不少是在X染色体上有对应者的。许多Y染基因(包括精子基因RBMY和DAZ)以多个拷贝形式存在。此外,如前文所述,DNA序列倒置、缺失的情况很常见。Y染色体还具备许多似乎对生物性状无贡献的DNA序列。此类“垃圾DNA”由高度重复序列组成,这些序列源自旧病毒的碎片、死亡基因以及碱基的简单重复。大量碱基重复序列占据了Y染色体的大部分;它们能结合荧光染料,让你通过显微镜看见它们存在。Y很奇怪Y染色体为什么如此独特?故事要从进化讲起。大量证据表明,1.5亿年前,X和Y只是一对普通染色体(鸟类和鸭嘴兽仍然如此),彼此并无差异,父母各提供一条——就像常染色体那样。后来,这对染色体上的SRY基因进化,定义了一个种新的原始Y染色体(proto-Y)。根据定义,这种原始Y染被永远限制于睾丸内,并且因大量细胞分裂和极少修复而发生一系列突变。原始Y染迅速衰退,每百万年失去约10个活跃基因,数量从原来的1000个减少到目前的区区27个。它一端的一个“伪常染色体(pseudoautosomal)”小区域保留了最初形式,与X染色体相同。关于这种衰退会否持续,学界有很大争论,因为按照这个速度,全人类的Y染将在几百万年内消失(就像啮齿动物已经遭遇的那样)。技术升级推动测序突破人类基因组的第一份草图于1999年完成。自那以后,科学家们成功对所有常染色体以及X染色体进行了测序(只留下少数缺漏)。他们使用短读长测序(short-readsequencing)技术来实现目标,具体操作包括将DNA切割成大约一百个碱基的小片段,然后像拼图一样重新组装它们。.Y染色体比X染色体小太多当然直到最近,新技术才有能力沿单个长DNA分子进行碱基测序,得到数千个碱基的长读片段。这些较长读段更容易区分,故而更容易组装。因此,科学家得以解析Y染色体上那些令人困惑的重复和环状结构。Y染变变变今年3月,美国国家人类基因组研究所的生物信息学家亚当·菲利普(AdamPhillippy)和端粒到端粒联盟(T2T)报道了除Y染色体外的人类基因组完整测序。当时,T2T联盟在社交媒体上表示,他们已经掌握了Y染序列。而眼下,正如他们于《自然》发表新文章所介绍的那样,Y染色体6200万碱基的复杂排列已被详尽解析,此前部分测序工作所缺漏的3000万碱基信息也给补上了。菲利普等人在《自然》上不只发了一篇文章,另一份同时见刊的工作对来自世界各地21个不同群体男性的43条Y染色体进行了测序,旨在采样人类的遗传变异。测序43条Y染后,研究团队发现,它们的遗传差异很大。团队成员之一查尔斯·李(CharlesLee)表示:我很惊讶于Y染色体上某些基因的拷贝数差异。举个例子,A男性的Y染色体有23个名为TSPY的基因拷贝,该基因被认为与精子形成有关,B男性的Y染色体却有39个TSPY拷贝。此外,他们还发现Y染色体大量重复区域的大小和组成存在差异。上图显示不同个体Y染色体尺寸的差异很大遗传学家马克·乔布林(MarkJobling,未参与工作)指出,Y染色体上的DNA组织和保守水平表明它并未退化至消失边缘。“这篇论文证实了Y染色体的基因内容本质上是保守的,Y染色体仍在退化并注定消失的想法被这一事实彻底击垮了。”目前尚不清楚这些变异会否影响男性的生育能力或其他特征。但知道它们的存在,为我们后续研究奠定了基础。研究人员现在可以开展大规模研究,挖掘Y染色体变异与健康问题的相关性,例如与Y染色体有关的膀胱癌。...PC版:https://www.cnbeta.com.tw/articles/soft/1384955.htm手机版:https://m.cnbeta.com.tw/view/1384955.htm

封面图片

科学家正在利用人类基因组的"暗物质"来帮助治疗癌症

科学家正在利用人类基因组的"暗物质"来帮助治疗癌症来自伯尔尼大学和英塞尔医院的研究人员在最近发表在《细胞基因组学》杂志上的一项研究中确定了这种癌症类型的药物开发新目标。基因组中的暗物质他们在被称为"长非编码RNA(核糖核酸)"(lncRNAs)的不甚了解的一类基因中寻找新目标。LncRNAs在"暗物质"或非蛋白编码DNA中含量丰富,构成了人类基因组的绝大部分。人类基因组包括大约20000个"经典"蛋白质编码基因,但它们在100000个lncRNAs面前相形见绌,99%的lncRNAs的生物学功能仍然未知。用绿色荧光标记的ASO转染的三维肺癌球状体的显微镜图片。资料来源:UniBE/NCCRRNA&Disease正如长非编码RNAs这个名字所暗示的那样,与信使RNAs(mRNAs)不同,它们不编码蛋白质的构建计划。与mRNAs一样,lncRNAs的构建指令包含在细胞的DNA中。一个新的工具确定了潜在的目标为了研究lncRNAs在NSCLC中的作用,研究人员首先分析了公开可用的数据集,观察哪些lncRNAs存在于NSCLC中。这一分析得出了一个超过800个lnRNAs的名单,研究人员希望调查其对NSCLC细胞的重要性。为了进行这项调查,他们开发了一个筛选系统,通过删除DNA中的部分构建指令来阻止所选lncRNAs的产生。RobertaEsposito博士,伯尔尼大学肿瘤内科医院,伯尔尼大学生物医学研究部(DBMR)。资料来源:RobertaEsposito研究人员将他们的筛选系统应用于来自患者的两个NSCLC细胞系,并观察了对所选lncRNA的抑制如何影响癌细胞的所谓"标志"。特征是有助于疾病进展的细胞行为。增殖、转移形成和治疗抵抗。"评估三种不同的癌症标志的好处是,我们有一个全面的观点,但也有来自不同实验的大量数据,我们需要从中得出一个对非小细胞肺癌很重要的长非编码RNA的单一列表,"领导NCCRRNA与疾病资助项目的伯尔尼大学助理教授RoryJohnson说。该分析最终产生了一份名单,在所调查的800多个候选lncRNAs中,有80个对非小细胞肺癌很重要的高置信度候选lncRNAs。研究人员从这80个中挑选出几个lncRNAs进行后续实验。用一个短的RNA来摧毁一个长的RNA研究人员在这些后续实验中使用了一种方法,该方法不在DNA水平上起作用,而是在lncRNA产生后针对它们。为此,研究人员使用了被称为反义寡核苷酸(ASO)的化学合成的小RNA,它与它们所针对的lncRNA结合并导致其降解。值得注意的是,有几种ASO被批准用于治疗人类疾病,尽管还没有用于癌症。这些后续实验表明,对于大多数被选中的lnRNAs,ASO对它们的破坏抑制了细胞培养中的癌细胞分裂。重要的是,同样的处理方法对非癌症肺细胞几乎没有产生任何影响,这些细胞也不会受到癌症治疗的伤害。在NSCLC的三维模型中,它比细胞培养更接近肿瘤,用ASO抑制单一lncRNA使肿瘤生长减少一半以上。共同第一作者TaisiaPolidori说:"我们非常惊讶地看到反义寡核苷酸能够在不同的模型中很好地抑制肿瘤的生长,"她在伯尔尼大学从事该项目,作为其博士论文研究的一部分。疗法开发和应用于其他肿瘤类型研究人员正在继续他们在临床前癌症模型中的研究,并考虑与现有公司合作或创建一个创业公司,以开发治疗病人的药物。关于其他癌症,共同第一作者、伯尔尼大学的博士后RobertaEsposito。"就像一个可以很容易地重新定位以研究空间的不同部分的望远镜,我们的方法很容易适应以揭示其他癌症类型的新的潜在治疗类型"。Esposito博士现在将应用"望远镜"来确定结直肠癌的新目标。为此,她得到了伯尔尼大学医学系由BéactriceEderer-Weber基金会捐赠的资金。NCCRRNA&Disease-RNA在疾病机制中的作用NCCRRNA&Disease-RNA生物学在疾病机制中的作用研究生命中非常重要的一类分子。RNA(核糖核酸),它对许多重要的过程是至关重要的,其功能比最初假设的要复杂得多。例如,在一个特定的细胞中,RNA定义了特定基因被激活或不被激活的条件。如果这个基因调控过程的任何部分出现故障或运行不畅,就会导致心脏病、癌症、脑部疾病和代谢紊乱。NCCR汇集了研究RNA生物学不同方面的瑞士研究小组。通过研究哪些调节机制在疾病中失调,NCCR发现了新的治疗目标。...PC版:https://www.cnbeta.com.tw/articles/soft/1332181.htm手机版:https://m.cnbeta.com.tw/view/1332181.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人