科学家正在利用人类基因组的"暗物质"来帮助治疗癌症

科学家正在利用人类基因组的"暗物质"来帮助治疗癌症来自伯尔尼大学和英塞尔医院的研究人员在最近发表在《细胞基因组学》杂志上的一项研究中确定了这种癌症类型的药物开发新目标。基因组中的暗物质他们在被称为"长非编码RNA(核糖核酸)"(lncRNAs)的不甚了解的一类基因中寻找新目标。LncRNAs在"暗物质"或非蛋白编码DNA中含量丰富,构成了人类基因组的绝大部分。人类基因组包括大约20000个"经典"蛋白质编码基因,但它们在100000个lncRNAs面前相形见绌,99%的lncRNAs的生物学功能仍然未知。用绿色荧光标记的ASO转染的三维肺癌球状体的显微镜图片。资料来源:UniBE/NCCRRNA&Disease正如长非编码RNAs这个名字所暗示的那样,与信使RNAs(mRNAs)不同,它们不编码蛋白质的构建计划。与mRNAs一样,lncRNAs的构建指令包含在细胞的DNA中。一个新的工具确定了潜在的目标为了研究lncRNAs在NSCLC中的作用,研究人员首先分析了公开可用的数据集,观察哪些lncRNAs存在于NSCLC中。这一分析得出了一个超过800个lnRNAs的名单,研究人员希望调查其对NSCLC细胞的重要性。为了进行这项调查,他们开发了一个筛选系统,通过删除DNA中的部分构建指令来阻止所选lncRNAs的产生。RobertaEsposito博士,伯尔尼大学肿瘤内科医院,伯尔尼大学生物医学研究部(DBMR)。资料来源:RobertaEsposito研究人员将他们的筛选系统应用于来自患者的两个NSCLC细胞系,并观察了对所选lncRNA的抑制如何影响癌细胞的所谓"标志"。特征是有助于疾病进展的细胞行为。增殖、转移形成和治疗抵抗。"评估三种不同的癌症标志的好处是,我们有一个全面的观点,但也有来自不同实验的大量数据,我们需要从中得出一个对非小细胞肺癌很重要的长非编码RNA的单一列表,"领导NCCRRNA与疾病资助项目的伯尔尼大学助理教授RoryJohnson说。该分析最终产生了一份名单,在所调查的800多个候选lncRNAs中,有80个对非小细胞肺癌很重要的高置信度候选lncRNAs。研究人员从这80个中挑选出几个lncRNAs进行后续实验。用一个短的RNA来摧毁一个长的RNA研究人员在这些后续实验中使用了一种方法,该方法不在DNA水平上起作用,而是在lncRNA产生后针对它们。为此,研究人员使用了被称为反义寡核苷酸(ASO)的化学合成的小RNA,它与它们所针对的lncRNA结合并导致其降解。值得注意的是,有几种ASO被批准用于治疗人类疾病,尽管还没有用于癌症。这些后续实验表明,对于大多数被选中的lnRNAs,ASO对它们的破坏抑制了细胞培养中的癌细胞分裂。重要的是,同样的处理方法对非癌症肺细胞几乎没有产生任何影响,这些细胞也不会受到癌症治疗的伤害。在NSCLC的三维模型中,它比细胞培养更接近肿瘤,用ASO抑制单一lncRNA使肿瘤生长减少一半以上。共同第一作者TaisiaPolidori说:"我们非常惊讶地看到反义寡核苷酸能够在不同的模型中很好地抑制肿瘤的生长,"她在伯尔尼大学从事该项目,作为其博士论文研究的一部分。疗法开发和应用于其他肿瘤类型研究人员正在继续他们在临床前癌症模型中的研究,并考虑与现有公司合作或创建一个创业公司,以开发治疗病人的药物。关于其他癌症,共同第一作者、伯尔尼大学的博士后RobertaEsposito。"就像一个可以很容易地重新定位以研究空间的不同部分的望远镜,我们的方法很容易适应以揭示其他癌症类型的新的潜在治疗类型"。Esposito博士现在将应用"望远镜"来确定结直肠癌的新目标。为此,她得到了伯尔尼大学医学系由BéactriceEderer-Weber基金会捐赠的资金。NCCRRNA&Disease-RNA在疾病机制中的作用NCCRRNA&Disease-RNA生物学在疾病机制中的作用研究生命中非常重要的一类分子。RNA(核糖核酸),它对许多重要的过程是至关重要的,其功能比最初假设的要复杂得多。例如,在一个特定的细胞中,RNA定义了特定基因被激活或不被激活的条件。如果这个基因调控过程的任何部分出现故障或运行不畅,就会导致心脏病、癌症、脑部疾病和代谢紊乱。NCCR汇集了研究RNA生物学不同方面的瑞士研究小组。通过研究哪些调节机制在疾病中失调,NCCR发现了新的治疗目标。...PC版:https://www.cnbeta.com.tw/articles/soft/1332181.htm手机版:https://m.cnbeta.com.tw/view/1332181.htm

相关推荐

封面图片

科学家利用CRISPR工具识别导致肝癌的基因突变

科学家利用CRISPR工具识别导致肝癌的基因突变CSHL的科学家们在小鼠身上创造了两种肝脏肿瘤亚型,上面的图像。左边的图像显示了一种肝脏肿瘤亚型,它与人类肝癌的最常见形式--肝细胞癌有关。右边是一种与较罕见的肝癌有关的肿瘤亚型,主要发现于儿童,名为肝母细胞瘤。基因包含产生蛋白质所需的信息。拼接是一个过程,从基因编码的信息中复制的RNA信息在被用作制造特定蛋白质的蓝图之前被编辑。源自单一基因、功能高度相似但氨基酸序列不同的蛋白质被称为异构体。异构体的产生是身体对一个基因或蛋白质的特性进行模仿的方式。不同的异构体可以导致不同类型的癌症肿瘤的形成。这些肿瘤亚型很难在实验室中产生,因此难以研究。为了更好地了解异构体如何导致不同类型肝癌的产生,一项新的研究使用基因编辑工具CRISPR/Cas9来研究不同的异构体如何导致不同肿瘤亚型的发展。该研究的通讯作者SemirBeyaz说:"每个人都认为癌症只是一种类型。但是有了不同的异构体,你最终会出现具有不同特征的癌症亚型。"研究人员使用CRISPR/Cas9锁定了小鼠基因CTNNB1的一个部分。CTNNB1基因提供了制造一种叫做β-catenin的蛋白质的指令,这种蛋白质参与调节和协调细胞间的粘附,并参与基因转录。以前的研究已经确定β-catenin是一种有效的致癌基因,这种基因可以将健康细胞转化为肿瘤细胞。CTNNB1基因的突变与广泛的癌症有关,包括肝癌和结肠癌。CTNNB1基因第3外显子的突变--外显子是编码蛋白质的DNA或RNA的一个部分--是参与肿瘤形成的基因转录的关键。在目前的研究中,研究人员希望确定β-catenin突变如何推动肝癌肿瘤亚型的发展,即肝细胞癌(HCC)和肝母细胞瘤(HB)。HCC是成人肝癌中最常见的类型,约占所有肝癌的90%,而HB是一种罕见的肝癌形式,常见于儿童。通常,CRISPR/Cas9技术被用来通过移除DNA序列的部分来抑制基因功能(功能丧失)。但在这里,研究人员首次将其用于功能增益研究,在小鼠中创造不同的致癌突变。以这种方式使用CRISPR/Cas9刺激了蛋白质的活性,因此也刺激了肿瘤的生长。通过对肿瘤亚型、HCC和HB进行基因测序,研究人员发现,CRISPR/Cas9诱导的β-catenin异构体推动了肝脏肿瘤亚型。Beyaz说:"我们能够确定那些与不同癌症亚型相关的异构体。对我们来说,这是一个令人惊讶的发现"。为了证实这些异构体导致了突变,研究人员测试了他们是否能够在不使用CRISPR的情况下在小鼠中产生肝癌亚型。他们发现确实可以。该研究强调了在功能增益研究中使用CRISPR/Cas9的潜力,并创造了一种模拟某些肝脏肿瘤亚型的新方法。它还进一步证明了外显子3在肿瘤发展中的作用以及靶向外显子跳过的好处。外显子跳过是一种疗法,它使用突变特异性反义寡核苷酸(AON)--一种实验室制造的可以与特定RNA分子结合的DNA或RNA位点--来诱导RNA剪接,使细胞"跳过"有问题的或错位的外显子。研究人员希望他们的发现可能会指导未来对癌症的新治疗干预措施的研究。Beyaz说:"最终,我们想做的是找到研究癌症生物学的最佳模型,以便我们能够找到治疗方法。"该研究发表在《病理学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354177.htm手机版:https://m.cnbeta.com.tw/view/1354177.htm

封面图片

科学家寻找到关于"开启"癌症基因遗传变化的新启示

科学家寻找到关于"开启"癌症基因遗传变化的新启示基因突变可以导致癌症,然而特定类型的影响,如断裂和重新连接DNA的结构变异,可以有很大差异。2022年12月7日发表在《自然》杂志上的研究结果表明,这些突变的活性取决于特定基因和调控基因的序列之间的距离,以及参与调控序列的活性水平。这项工作推进了预测和解释癌症基因组中发现的哪些基因突变导致疾病的能力。"如果我们能更好地了解一个人为什么会得癌症,以及什么特定的基因突变在驱动它,我们就能更好地评估风险并寻求新的治疗方法,"该论文的资深作者、基因表达实验室的助理教授杰西-迪克森说。大多数基因突变对癌症没有影响,导致致癌基因激活的分子事件也相对罕见。Dixon的实验室研究基因组是如何在三维空间中组织的,并试图了解为什么这些变化会在某些情况下发生,而不是大多数情况下。该团队还希望确定可能区分这些事件发生地点和时间的因素。"一个基因就像一盏灯,调节它的东西就像灯的开关,"迪克森说。"我们看到,由于癌症基因组中的结构变异,有很多开关有可能'打开'一个特定的基因。"从左起分别是徐志超和JesseDixon资料来源:索尔克研究所利用CRISPR-Cas9基因编辑,研究小组通过在基因组的某些位置切割DNA来引入基因突变。他们发现,他们创造的一些变体对附近基因的表达有重大影响,并可能最终导致癌症,但大多数变体基本上没有影响。当一些基因被带入具有新的调控序列的环境中时,它们似乎会出现混乱,而其他基因则完全不受影响。被引入的序列类型似乎对细胞是否变成癌症有巨大影响。"我们的下一步行动是测试基因组中是否有其他因素有助于激活致癌基因,"萨尔克大学博士后、该论文的共同第一作者徐志超说。"我们也对我们正在开发的一种新的CRISPR基因组编辑技术感到兴奋,它可以使这种类型的基因组工程工作更加有效"。...PC版:https://www.cnbeta.com.tw/articles/soft/1335047.htm手机版:https://m.cnbeta.com.tw/view/1335047.htm

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止DNA损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了145个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和DNA损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过CRISPR筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质SIRT1得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(GabrielBalmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对SIRT1的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(DavidAdams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的145个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及DNA复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当SIRT1蛋白被抑制时,DNA损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为SMC3的蛋白质的化学水平实现的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419823.htm手机版:https://m.cnbeta.com.tw/view/1419823.htm

封面图片

科学家发现对抗癌症微妙基因操纵的药物

科学家发现对抗癌症微妙基因操纵的药物了解DNA缺失许多癌症都会删除一段名为9p21的DNA。事实上,它是所有癌症中最常见的DNA缺失,在某些癌症(如黑色素瘤、膀胱癌、间皮瘤和某些脑癌)中的发生率高达25%-50%。科学家们早就知道,带有9p21缺失的癌症意味着患者的预后更差,而且对免疫疗法--旨在增强患者对癌症的天然免疫反应的治疗策略--产生抗药性。这种缺失有助于癌细胞避免被免疫系统发现和消灭,部分原因是它促使癌细胞分泌出一种叫做MTA的有毒化合物,这种化合物会损害免疫细胞的正常功能,并阻碍免疫疗法的有效性。口腔鳞状癌细胞(白色)被两个细胞毒性T细胞(红色)攻击的伪彩色扫描电子显微镜照片。资料来源:美国国立卫生研究院国家癌症研究所贝勒医学院邓肯综合癌症中心RitaElenaSerda。新药的潜力"在动物模型中,我们的药物能将MTA降回正常值,免疫系统重新启动,"领导这项研究的戴尔医学院分子生物科学系研究副教授兼肿瘤学副教授埃弗雷特-斯通(EverettStone)说。"我们在肿瘤周围看到了更多的T细胞,它们处于攻击模式。T细胞是一种重要的免疫细胞类型,就像一支特警队,能够识别肿瘤细胞,并为它们注入大量酶,从内到外啃噬肿瘤。"斯通设想将这种药物与免疫疗法结合使用,以提高其疗效。该研究的共同第一作者是前UT博士后研究员、现任武田肿瘤公司科学家的DonjetaGjuka,以及前布里格姆妇女医院和丹娜法伯癌症研究所博士后研究员、现任麻省总布里格姆医院住院医师的ElioAdib。了解受缺失影响的基因9p21缺失会导致癌细胞中一些关键基因的缺失。一对产生细胞周期调节因子的基因消失了,而细胞周期调节因子是保持健康细胞以缓慢、稳定的速度生长和分裂的蛋白质。当这些基因丢失时,细胞就会肆意生长。这就是它们致癌的原因。同样被删除的还有一个管家基因,它能产生一种分解毒素MTA的酶。斯通认为,正是这种基因的缺失让癌细胞获得了一种新的超级能力:使免疫系统失活的能力。斯通说:"当癌细胞失去这两个基因时,它就获得了一举两得的效果。它失去了通常防止其失控生长的制动器。与此同时,它还解除了人体警察部队的武装。因此,它会变成一种更具侵略性和恶性的癌症。"为了制造出候选药物,斯通和他的同事们首先利用人体自然产生的有助于分解MTA的酶,然后加入柔性聚合物。斯通说:"这已经是一种非常好的酶,但我们需要对其进行优化,使其在体内的作用时间更长。如果我们只注射天然酶,它会在几小时内被排出体外。在小鼠体内,我们的改良版能在血液循环中存活数天;在人体内,它的存活时间会更长。"研究人员计划对他们这种名为PEG-MTAP的药物进行更多的安全性测试,并正在寻求资金将其用于人体临床试验。...PC版:https://www.cnbeta.com.tw/articles/soft/1390517.htm手机版:https://m.cnbeta.com.tw/view/1390517.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

封面图片

科学家们开发出能阻止肿瘤生长的新型癌症疗法

科学家们开发出能阻止肿瘤生长的新型癌症疗法一种新疗法利用经过修饰的微核糖核酸链靶向癌细胞,这种核糖核酸链可自然阻断细胞分裂。图片来源:第二湾工作室/普渡大学癌症几乎可以发生在人体的任何部位。它的特点是细胞不受控制地分裂,而且可能无视死亡或停止分裂的信号,甚至躲避免疫系统。这种疗法在小鼠模型中进行了测试,它结合了一种靶向癌细胞的递送系统和一种经过特殊修饰的microRNA-34a分子,这种分子的作用"就像汽车的刹车一样",可以减缓或停止细胞分裂,领衔作者、普渡大学威廉和帕蒂-米勒生物科学副教授AndreaKasinski说。除了减缓或逆转肿瘤生长外,靶向microRNA-34a还能在至少120小时内强力抑制至少三种基因的活性--MET、CD44和AXL--已知这三种基因会驱动癌症和对其他癌症疗法产生抗药性。研究结果表明,这种正在申请专利的疗法是15年多来针对微小核糖核酸(microRNA)消灭癌症工作的最新迭代,它可以单独使用,也可以与现有药物联合使用,对已经产生耐药性的癌症有效。当我们获得这些数据时,我欣喜若狂。普渡大学癌症研究所成员卡辛斯基说:"我相信,这种方法比目前的治疗标准更好,有些病人将从中受益。"MicroRNA-34a是一种短的双股核糖核酸--一串核糖核酸像拉链的齿一样沿着糖磷酸链的长度连接在一起。microRNA的两条链不均匀地拉在一起,其中一条链引导蛋白质复合物到达细胞内的工作点,而另一条链则被破坏。在健康细胞中,microRNA-34a的含量很高,但在许多癌细胞中,它的含量却急剧下降。在癌细胞中重新引入microRNA-34a的想法看似简单,但研究团队在设计有效疗法时却要克服许多挑战。天然存在的RNA会迅速分解,因此为了提高疗法的持久性,研究小组沿链长添加了几个小原子团,从而稳定了microRNA-34a。研究小组以美国食品和药物管理局批准的化学结构为模型进行了修改,生物技术公司Alnylam的研究人员在类似的短干扰RNA上使用了这种化学结构。在小鼠模型上进行的实验表明,经过修饰的microRNA-34a在导入后至少能维持120小时。另外,经过完全修饰的microRNA-34a不会被免疫系统发现,而免疫系统通常会攻击进入体内的双链RNA。为了确保经过修饰的microRNA-34a能够进入癌细胞,研究小组将双链连接到了一个叶酸维生素分子上。人体内所有细胞的表面都有与叶酸结合的受体,能将维生素吸入细胞,但乳腺癌、肺癌、卵巢癌和宫颈癌等许多癌症细胞的细胞表面的叶酸受体远远多于健康细胞。微小的microRNA-34a和叶酸化合物能穿透肿瘤的致密组织,与细胞表面的叶酸受体结合。然后,它被吸入一个叫做囊泡的细胞膜小袋中。进入细胞后,部分microRNA-34a能够逃出囊泡,减缓细胞分裂。这种疗法的靶向特异性减少了必须施用的化合物量,从而降低了潜在的毒性、副作用和成本。研究小组还可以针对前列腺癌细胞制备另一种针对不同细胞表面受体的药物,因为前列腺癌细胞不会产生过多的叶酸受体。卡辛斯基和她的团队对最新迭代产品的价值充满信心,并将为临床试验做好准备。...PC版:https://www.cnbeta.com.tw/articles/soft/1382523.htm手机版:https://m.cnbeta.com.tw/view/1382523.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人