细菌能储存记忆并传递数代

细菌能储存记忆并传递数代根据发表在PNAS期刊上的一项研究,科学家发现细菌能像记忆那样储存信息并传递数代。细菌没有神经元、突触或神经系统,它的记忆更接近计算机的信息储存。研究结果有助于对抗细菌耐药性。德州奥斯丁研究人员发现,大肠杆菌能利用铁含量(ironlevels)存储不同行为的信息,这些信息可以响应特定刺激而被激活。铁是地球最丰富的元素之一。研究人员发现铁的记忆能传递至少四代,到第七代消失。研究人员认为铁含量可作为对抗细菌耐药性的一个目标。()()投稿:@ZaiHuaBot频道:@TestFlightCN

相关推荐

封面图片

科学家发现细菌也有 "记忆" 利用铁的含量来储存和回忆

科学家发现细菌也有"记忆"利用铁的含量来储存和回忆科学家发现,细菌可以形成类似记忆的机制,为导致人类危险感染的策略提供信息。这些策略包括抗生素耐药性和细菌群的形成,即数以百万计的细菌聚集在一个物体表面。这一发现对预防和治疗细菌感染,尤其是涉及抗生素耐药菌株的感染具有重要意义。这一过程涉及一种常见的化学元素,细菌细胞利用这种化学元素创造并向后代传递这些"记忆"。德克萨斯大学研究人员的发现德克萨斯大学奥斯汀分校的研究人员发现,大肠杆菌利用铁含量来储存不同行为的信息,然后在受到某些刺激时激活这些信息。这一发现发表在《美国国家科学院院刊》上。科学家们以前曾观察到,有过群聚(利用鞭毛在表面上集体移动)经历的细菌会提高随后的群聚表现,UT领导的研究小组开始研究其中的原因。实验室平板上的细菌群。资料来源:德克萨斯大学奥斯汀分校了解细菌的"记忆细菌没有神经元、突触或神经系统,因此它们的记忆并不像儿时生日派对上吹蜡烛的记忆。它们更像是存储在计算机中的信息。"细菌没有大脑,但它们可以从环境中收集信息,如果它们经常遇到这种环境,它们就可以存储这些信息,并在日后快速获取这些信息,从而使自己受益,"第一作者、UT大学分子生物科学系教务长早期职业研究员苏维克-巴塔查里亚(SouvikBhattacharyya)说。铁在细菌行为中的作用这一切都与铁有关,铁是地球上最丰富的元素之一。单细胞和自由浮游细菌的铁含量各不相同。科学家观察到,铁含量较低的细菌细胞更善于群居。与此相反,在固体表面形成生物膜(致密、粘稠的细菌垫)的细菌,其细胞中的铁含量较高。具有抗生素耐受性的细菌也具有均衡的铁含量。这些铁记忆至少会持续四代,到第七代就会消失。"在地球大气中出现氧气之前,早期的细胞生命就利用铁来完成许多细胞过程。铁不仅是地球生命起源的关键,也是生命进化的关键,"巴塔查里亚说。"细胞以这种方式利用铁是合情合理的。"显微镜下的细菌群视频。图片来源:德克萨斯大学奥斯汀分校研究人员推测,当铁含量较低时,细菌的记忆会被触发,从而形成一个快速移动的迁移群,在环境中寻找铁。当铁含量较高时,细菌的记忆就会显示这个环境是一个适合它们停留并形成生物膜的好地方。"铁的含量肯定是治疗的目标,因为铁是影响毒力的一个重要因素,"巴塔查里亚说。"归根结底,我们对细菌行为了解得越多,对付它们就越容易。"...PC版:https://www.cnbeta.com.tw/articles/soft/1399859.htm手机版:https://m.cnbeta.com.tw/view/1399859.htm

封面图片

铁含量引发细菌形成一种"记忆"并世代相传

铁含量引发细菌形成一种"记忆"并世代相传大肠杆菌的显微图像。资料来源:美国国立卫生研究院这项研究的第一作者苏维克-巴塔查里亚(SouvikBhattacharyya)说:"细菌没有大脑,但它们可以从环境中收集信息,如果它们经常遇到这种环境,它们就可以储存这些信息,并在日后快速获取这些信息,从而使自己受益。"细菌可以很容易地适应环境,这就引发了关于细菌是否可以存储信息以实现这种适应性的理论和实验。研究人员已经确定,先前的经验--细菌种群在固体或半固体表面的快速、协调运动会提高随后的繁殖性能,但他们想了解为什么会出现这种情况。在进行了1万多次单细胞蜂群试验后,他们发现细菌信息收集和记忆的关键在于铁元素。巴塔查里亚说:"在地球大气中出现氧气之前,早期的细胞生命利用铁来完成许多细胞过程。铁不仅对生命的起源至关重要,而且对生命的进化也至关重要。细胞以这种方式利用铁是合情合理的。"研究人员发现,"铁记忆"预先存在于自由浮游的细菌细胞中,并通过蜂拥行为得到强化。铁含量低的细胞更善于成群繁殖,而形成生物膜的细胞铁含量则较高,生物膜是指附着在表面上和/或彼此间的密集细菌群。这些被黏液包裹的生物膜是一种生存机制,可以保护细菌免受宿主免疫系统和抗生素的侵害。实验室平板上的细菌群。图片由德克萨斯大学奥斯汀分校提供他们观察到,母细胞的铁记忆(与其成群潜能相关)会传给第四代子细胞。到第七代时,这种记忆自然消失,而人为控制铁含量则能使这种记忆持续更长时间。根据研究结果,研究人员推测,铁含量低会触发细菌记忆,使它们形成快速移动的迁徙群,在环境中寻找铁。当铁含量高时,记忆会告诉细菌定居下来,形成生物膜。巴塔查里亚说:"铁的含量肯定是治疗的目标,因为铁是毒力的一个重要因素。归根结底,我们对细菌行为了解得越多,对付它们就越容易。"这项研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1398907.htm手机版:https://m.cnbeta.com.tw/view/1398907.htm

封面图片

磷基纳米技术能撕裂超级细菌并加速伤口愈合

磷基纳米技术能撕裂超级细菌并加速伤口愈合研究人员利用纳米片状黑磷(红色)杀死细菌(绿色)亚伦-埃尔本及其同事/麻省理工大学面对超级细菌肆虐带来的挑战,我们需要找到解决伤口感染的新方法。如果考虑到大约70%的细菌已经对至少一种常见的抗生素产生了抗药性,而自2000年以来,只发现了五种新的抗生素,那么这种需求就会变得更加强烈。最近,澳大利亚皇家墨尔本理工大学(RMITUniversity)的研究人员提出了一种新颖的无药方法,用于预防接受钛植入物的人术后感染。现在,他们又与南澳大利亚大学的研究人员合作,开发出另一种创新方法,利用纳米级的黑磷片来解决由超级细菌引起的伤口感染问题。这项研究的共同作者之一亚伦-埃尔本(AaronElbourne)说:"超级细菌,也就是对抗生素具有耐药性的病原体造成了巨大的健康负担,随着耐药性的增加,我们治疗这些感染的能力也变得越来越具有挑战性。"黑磷晶体西默斯-丹尼尔/RMIT大学黑磷最近被确认为一种有效的抗菌剂。它是磷最稳定的物理形态,由二维磷层(称为"磷烯")组成,就像石墨由许多石墨烯层组成一样。在之前的工作中,研究人员展示了排列在纳米薄层中的黑磷如何通过其产生活性氧的独特能力杀死微生物。该研究的共同作者苏梅特-瓦利亚(SumeetWalia)说:"当纳米材料分解时,其表面会与大气发生反应,产生所谓的活性氧。这些物种最终有助于撕裂细菌细胞"。在目前的研究中,研究人员测试了使用黑磷纳米片(BPNFs)对常见细菌的安全性和有效性,包括耐药性金黄色葡萄球菌("金色葡萄球菌")、绿脓杆菌和大肠杆菌。经BPNFs处理的金黄色葡萄球菌在两小时内细胞活力下降62%,六小时后活力下降80%。24小时后,超过99%的细菌被杀死。铜绿假单胞菌也出现了类似的趋势,24小时后,BPNFs导致80%以上的细菌死亡。BPNFs不仅能在不损害其他细胞的情况下消灭细菌,而且还能在感染威胁消除后自行分解。Walia说:"我们的抗菌纳米技术能迅速消灭99%以上的细菌细胞,大大超过了目前治疗感染的普通疗法。"当研究人员在小鼠伤口上测试BPNFs与环丙沙星(一种常用的广谱抗生素)的效果时,他们发现两者在清除金黄色葡萄球菌方面的效果相当。与对照组相比,BPNFs还能在宏观和微观层面上促进伤口愈合和组织再生。每天使用BPNFs治疗七天,伤口闭合率达到80%,没有发红或皮肤破损的迹象。研究人员总结说,观察到的伤口再上皮化程度的改善(即在伤口和环境之间建立屏障)表明,即使伤口感染了抗药性很强的金黄色葡萄球菌,BPNFs也能促进伤口愈合。虽然黑磷的抗菌特性众所周知,但它的伤口愈合特性却没有很好的记录。这项研究的通讯作者兹拉特科-科佩茨基(ZlatkoKopecki)说:"这是令人兴奋的,因为这种疗法在根除伤口感染方面与环丙沙星抗生素不相上下,并能加速伤口愈合,七天内伤口闭合80%。我们迫切需要开发新的非抗生素替代方法来治疗和控制伤口感染。黑磷似乎正中要害,我们期待看到这项研究成果转化为慢性伤口的临床治疗。"黑磷纳米片可与凝胶结合制成伤口敷料SeamusDaniel/RMITUniversity研究人员说,BPNFs的魅力在于它们可以融入一系列材料中。这一创新的魅力在于,它不是简单的涂层,它实际上可以融入设备、塑料和凝胶等常见材料中,使其具有抗菌性。研究团队正寻求与行业伙伴合作,共同开发这项技术并制作原型。Elbourne说:"如果我们能让我们的发明在临床环境中成为商业现实,那么全球的超级细菌就不会知道他们受到了什么打击。"这项研究发表在《先进治疗学》(AdvancedTherapeutics)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1383621.htm手机版:https://m.cnbeta.com.tw/view/1383621.htm

封面图片

细菌迅速适应 新型抗生素也失去效力

细菌迅速适应新型抗生素也失去效力众所周知,阿比西丁能高效杀死细菌,包括超级细菌大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus或"GoldenStaph"),这种相对较新的抗生素被誉为抗生素耐药性问题的答案。然而,柏林自由大学(FreieUniversitätBerlin)研究人员的一项新研究发现,尽管这种抗生素很新,但常见的问题细菌已经通过基因扩增机制对阿霉素产生了抗药性。阿比西丁的作用模式与其他抗生素不同。它被称为肽抗生素,能抑制DNA回旋酶,这是帮助细菌进行DNA复制的重要酶。DNA回旋酶存在于细菌中,但不存在于人类中,因此它是一个很好的靶点。研究人员使用了一套广泛的工具来研究细菌对阿比西丁产生抗药性的机制,包括RNA测序、蛋白质分析、X射线晶体学和分子建模。他们发现,两种常见的人类感染相关细菌--鼠伤寒沙门氏菌和大肠杆菌--在接触浓度越来越高的涕灭威药物后产生了抗药性。他们发现,产生抗药性的原因是细菌细胞中STM3175基因的拷贝数增加了,随着细胞的繁殖,该基因的拷贝数在连续几代中不断扩大,产生了高达1000倍的抗药性。该基因编码一种能与阿比西丁相互作用的蛋白质,保护细菌免受抗生素的杀灭。研究人员还发现,相同的抗药性机制在无害细菌和致病细菌中都很普遍,包括可导致危及生命的伤口感染的弧菌和可导致肺炎和手术后血液感染的铜绿假单胞菌。抗生素耐药性是公共医疗保健领域日益关注的问题,据世界卫生组织(WHO)称,它是全球健康、粮食安全和发展面临的最大威胁之一。据《柳叶刀》杂志2019年的一篇文章报道,当年有127万人死于细菌抗生素耐药性。目前的研究让人们更好地了解了细菌对抗生素产生耐药性的内在机制;不幸的是,这项研究涉及的是一种相对较新的药物,这种药物被吹捧为解决上述耐药性的手段。不过,这项研究的发现可以为开发基于阿比西丁的抗生素疗法提供参考。该研究发表在《PLOSBiology》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376913.htm手机版:https://m.cnbeta.com.tw/view/1376913.htm

封面图片

科学家利用基因编辑与耐抗生素细菌作斗争

科学家利用基因编辑与耐抗生素细菌作斗争通过利用细菌免疫系统作为基因编辑工具,一种可能有助于减少抗菌素耐药性传播的新工具正显示出早期的前景。世界卫生组织称,抗菌素耐药性是一个主要的全球威胁,每年有近500万人因抗生素无法治疗感染而死亡。细菌通常在耐药基因在宿主之间传播时产生耐药性。发生这种情况的一种方式是通过质粒--DNA的环状链,它可以在细菌之间轻松传播,并迅速复制。这可能发生在我们的身体和环境中,如水道。埃克塞特大学团队利用CRISPR-Cas基因编辑系统,该系统可以针对特定的DNA序列,并在遇到这些序列时进行切割。研究人员设计了一个质粒,可以专门针对庆大霉素的抗性基因--一种常用的抗生素。在实验室实验中,今天(5月25日)发表在《微生物学》杂志上的这项新研究发现,该质粒保护其宿主细胞不产生抗药性。此外,研究人员还发现,该质粒有效地针对它所转移的宿主中的抗菌素抗性基因,逆转了它们的抗性。主要作者、埃克塞特大学的DavidWalker-Sünderhauf说:"就全球死亡人数而言,抗菌素耐药性的危害性有可能超过Covid。我们迫切需要新的方法来阻止耐药性在宿主之间的传播。我们的技术正在显示出消除广泛的不同细菌的抗性的早期前景。我们的下一步是在更复杂的微生物群落中进行实验。我们希望有一天,它可以成为一种减少抗菌素耐药性在污水处理厂等环境中传播的方法,我们知道这些环境是耐药性的滋生地。"...PC版:https://www.cnbeta.com.tw/articles/soft/1361645.htm手机版:https://m.cnbeta.com.tw/view/1361645.htm

封面图片

新研究表明宠物狗或猫可能正在传播致命的超级细菌

新研究表明宠物狗或猫可能正在传播致命的超级细菌将于4月27日至4月30日在西班牙巴塞罗那举行的ESCMID全球大会上公布的最新研究表明,宠物狗和宠物猫在很大程度上助长了耐抗生素细菌的传播。研究发现,在葡萄牙和英国,患病猫狗和它们健康的主人之间存在耐多药细菌传播的证据,这引发了人们对宠物可能成为耐药性贮藏库,从而助长对重要药物的耐药性传播的担忧。全世界的抗生素耐药性正达到危险的高水平。世界卫生组织(WHO)将抗生素耐药性列为人类面临的最大公共卫生威胁之一。里斯本大学兽医学院动物健康跨学科研究中心抗生素耐药性实验室的首席研究员朱莉安娜-梅内塞斯(JulianaMenezes)说:"最新研究表明,抗菌药耐药性(AMR)细菌在人类和动物(包括宠物)之间的传播对维持耐药性水平至关重要,这对传统观念提出了挑战,即人类是社区中AMR细菌的主要携带者。了解并解决AMR细菌从宠物向人类传播的问题,对于有效对抗人类和动物群体的抗菌药耐药性至关重要"。梅内塞斯女士及其同事对猫狗及其主人的粪便和尿液样本以及皮肤拭子进行了检测,以确定是否存在对普通抗生素耐药的肠杆菌(包括大肠杆菌和肺炎克雷伯菌在内的一大类细菌)。他们重点研究了对第三代头孢菌素(用于治疗脑膜炎、肺炎和败血症等多种疾病,被世界卫生组织列为人类医学最重要的抗生素之一)和碳青霉烯类(其他抗生素失效时的最后一道防线)产生抗药性的细菌。这项前瞻性纵向研究涉及葡萄牙43个家庭的5只猫、38只狗和78个人,以及英国22个家庭的22只狗和56个人。所有人类都很健康,所有宠物都患有皮肤和软组织感染(SSTI)或尿路感染(UTI)。宠物与人类之间传播的证据在葡萄牙,有一只狗(1/43,2.3%)感染了产生OXA-181的耐多药大肠埃希菌菌株。OXA-181是一种对碳青霉烯类产生抗药性的酶。3只猫、21只狗(24/43只宠物,55.8%)和28位饲主(28/78位饲主,35.9%)携带了产生ESBL/Amp-C的肠杆菌。这些细菌对第三代头孢菌素具有耐药性。在五户家庭中,一户养猫,四户养狗,宠物和主人都携带了产生ESBL/AmpC的细菌。基因分析表明菌株相同,表明细菌在宠物和主人之间传播。在这五个家庭中,有一个家庭的狗和主人也带有相同的抗生素耐药肺炎克雷伯菌株。在英国,有一只狗(1/22只宠物,14.3%)被两株产生NDM-5β-内酰胺酶的耐多药大肠杆菌感染。这些大肠杆菌对第三代头孢菌素、碳青霉烯类和其他几类抗生素具有耐药性。从8只狗(8/22只宠物,36.4%)和3位主人(3/24位主人,12.5%)身上分离出了产ESBL/AmpC的肠杆菌。在两个家庭中,狗和主人都携带了同样的ESBL/AmpC产菌。然而,在葡萄牙的三个家庭中,ESBL/AmpC产细菌检测呈阳性的时间强烈表明,至少在这些情况下,细菌是由宠物(两只狗和一只猫)传染给人的。建议和结论梅内泽斯说:"我们的发现强调了将饲养宠物的家庭纳入监测抗生素耐药性水平的国家计划的重要性。更多地了解宠物的抗药性将有助于制定知情的、有针对性的干预措施,以保障动物和人类的健康。"人与宠物之间可以通过抚摸、接触或亲吻以及处理粪便来传播细菌。为防止传播,研究人员建议主人养成良好的卫生习惯,包括在抚摸猫狗和处理其排泄物后洗手。当饲养的宠物不舒服时,可以考虑将它们隔离在一个房间里,以防止细菌在整个房子里传播,并彻底清洁其他房间。实验中所有猫狗的感染都得到了成功治疗,猫狗的主人没有发生感染,因此不需要治疗。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427440.htm手机版:https://m.cnbeta.com.tw/view/1427440.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人