细菌迅速适应 新型抗生素也失去效力

细菌迅速适应新型抗生素也失去效力众所周知,阿比西丁能高效杀死细菌,包括超级细菌大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus或"GoldenStaph"),这种相对较新的抗生素被誉为抗生素耐药性问题的答案。然而,柏林自由大学(FreieUniversitätBerlin)研究人员的一项新研究发现,尽管这种抗生素很新,但常见的问题细菌已经通过基因扩增机制对阿霉素产生了抗药性。阿比西丁的作用模式与其他抗生素不同。它被称为肽抗生素,能抑制DNA回旋酶,这是帮助细菌进行DNA复制的重要酶。DNA回旋酶存在于细菌中,但不存在于人类中,因此它是一个很好的靶点。研究人员使用了一套广泛的工具来研究细菌对阿比西丁产生抗药性的机制,包括RNA测序、蛋白质分析、X射线晶体学和分子建模。他们发现,两种常见的人类感染相关细菌--鼠伤寒沙门氏菌和大肠杆菌--在接触浓度越来越高的涕灭威药物后产生了抗药性。他们发现,产生抗药性的原因是细菌细胞中STM3175基因的拷贝数增加了,随着细胞的繁殖,该基因的拷贝数在连续几代中不断扩大,产生了高达1000倍的抗药性。该基因编码一种能与阿比西丁相互作用的蛋白质,保护细菌免受抗生素的杀灭。研究人员还发现,相同的抗药性机制在无害细菌和致病细菌中都很普遍,包括可导致危及生命的伤口感染的弧菌和可导致肺炎和手术后血液感染的铜绿假单胞菌。抗生素耐药性是公共医疗保健领域日益关注的问题,据世界卫生组织(WHO)称,它是全球健康、粮食安全和发展面临的最大威胁之一。据《柳叶刀》杂志2019年的一篇文章报道,当年有127万人死于细菌抗生素耐药性。目前的研究让人们更好地了解了细菌对抗生素产生耐药性的内在机制;不幸的是,这项研究涉及的是一种相对较新的药物,这种药物被吹捧为解决上述耐药性的手段。不过,这项研究的发现可以为开发基于阿比西丁的抗生素疗法提供参考。该研究发表在《PLOSBiology》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376913.htm手机版:https://m.cnbeta.com.tw/view/1376913.htm

相关推荐

封面图片

科学家开发出抗击耐药细菌的新型抗生素

科学家开发出抗击耐药细菌的新型抗生素苏黎世大学核磁共振设施负责人、化学家奥利弗-泽尔贝(OliverZerbe)说:"不幸的是,新抗生素的研发渠道相当空虚。自从上一种针对以前未使用过的靶分子的抗生素获得批准以来,已经过去了50多年。"在最近发表在《科学进展》(ScienceAdvances)上的一项研究中,泽尔贝现在讨论了一类高效抗生素的开发情况,这类抗生素能以新颖的方式对抗革兰氏阴性细菌。世卫组织将这类细菌列为极度危险的细菌。这类细菌由于具有双层细胞膜,因此抗药性特别强,例如耐碳青霉烯类肠杆菌。除了乌兹赫里大学的团队外,制药公司SpexisAG的研究人员也参与了这项由Innosuisse共同资助的合作研究。研究人员的研究起点是一种名为比他汀的天然肽,昆虫用它来抵御感染。比他汀能破坏革兰氏阴性细菌外膜和内膜之间重要的脂多糖运输桥梁,几年前,现已退休的哈佛大学教授约翰-罗宾逊(JohnRobinson)在一项研究中揭示了这一点。结果,这些代谢物在细胞内积聚,导致细菌死亡。然而,比他汀并不适合用作抗生素药物,原因之一是它的效力较低,而且细菌很快就会对它产生抗药性。因此,研究人员改变了比他汀的化学结构,以增强这种肽的特性。泽尔贝说:"要做到这一点,结构分析至关重要。为此,结构分析至关重要。"他的团队合成了细菌转运桥的各个组成部分,然后利用核磁共振(NMR)观察比他汀与转运桥结合的位置和方式,以及如何破坏转运桥。利用这些信息,SpexisAG公司的研究人员计划进行必要的化学修饰,以增强多肽的抗菌效果。除其他外,还进一步进行了突变,以提高分子的稳定性。合成肽随后在感染细菌的小鼠身上进行了测试,结果非常出色。泽尔贝说:"事实证明,这种新型抗生素非常有效,尤其是在治疗肺部感染方面。它们对耐碳青霉烯类肠杆菌也非常有效,而大多数其他抗生素在这方面都失效了"。此外,新开发的肽类药物对肾脏没有毒性或危害,而且在血液中长期保持稳定--所有这些特性都是获得药物批准的必要条件。不过,在开始首次人体试验之前,还需要进一步的临床前研究。在选择最有前景的多肽进行研究时,研究人员确保它们也能有效对抗那些已经对比萨丁产生抗药性的细菌。泽尔贝说:"我们相信,这将大大减缓抗菌药耐药性的产生。我们现在有望获得一类新的抗生素,这种抗生素对抗药性细菌也同样有效"。...PC版:https://www.cnbeta.com.tw/articles/soft/1372775.htm手机版:https://m.cnbeta.com.tw/view/1372775.htm

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将700多份新的血液样本与近5000份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E.coli)的传播。最近发表在《柳叶刀微生物》(LancetMicrobe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过40%的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从8.4%到92.9%不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(AnnaPöntinen)博士是威康-桑格研究所(WellcomeSangerInstitute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(JulianParkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(WellcomeSangerInstitute)和挪威奥斯陆大学的尤卡-科兰德(JukkaCorander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419423.htm手机版:https://m.cnbeta.com.tw/view/1419423.htm

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别可有效对抗耐药细菌抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUSA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而LpxH蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI:10.1073/pnas.2317274121编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428294.htm手机版:https://m.cnbeta.com.tw/view/1428294.htm

封面图片

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌这些讨厌的细菌是近年来医务人员最恼火的一些问题。这些细菌是鲍曼不动杆菌和铜绿假单胞菌,分别以引发肺炎和败血症而闻名。它们一直对抗生素有抗药性,使它们几乎无法治疗。这些耐抗生素的细菌一直是如此致命,以至于世界卫生组织将它们加入了"优先病原体"名单,这是一份急需新的抗生素治疗的病原体名单,因为它们对免疫系统受损的人构成了风险。不过,有了这个新发现,科学家们可能最终在这场持续的战斗中获得了优势。发表在《分子医学》上的这项研究发现,像糖精、醋磺酰胺-K和甜蜜素这样的人工甜味剂能抑制抗生素耐药菌的生长。特别是安赛蜜-K,证明在防止这些细菌发展生物膜方面特别有效,生物膜可以保护它们不受抗生素的影响。总的来说,这些甜味剂在减少细菌对普通抗生素的耐药性方面显示出有效性,使其更容易有效和高效地治疗这些细菌,即使使用较小剂量的抗生素。而且,由于这些人工甜味剂在大多数饮食和无糖食品中都很活跃,它们已经被广泛使用。麦卡锡说,开发新的抗生素往往需要数年甚至数十亿美元的时间。因此,在许多人用来喝咖啡的甜味剂中发现一种能够削弱抗生素耐药性细菌的化合物是令人兴奋的,也是治疗败血症和肺炎的一个巨大进步。像败血症和肺炎背后的细菌往往能迅速适应和应对药物,使它们对抗生素特别具有抗药性。这种抗药性在人类和动物身上自然发生,但当过度开药时,我们只是在升级这个问题。能够打击这些耐抗生素的细菌,最终可以帮助突破我们所知的一些最大的病原体威胁。...PC版:https://www.cnbeta.com.tw/articles/soft/1333719.htm手机版:https://m.cnbeta.com.tw/view/1333719.htm

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin”可躲避细菌抗药性UIC生物科学副教授尤里-波利卡诺夫(YuryPolikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标--核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(NatureChemicalBiology)的一篇论文中对此进行了描述。研究人员通过使用一种名为X射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用X射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021年由UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419863.htm手机版:https://m.cnbeta.com.tw/view/1419863.htm

封面图片

耐抗生素的 "超级细菌"正在猫狗和主人之间传播 但尚未致病

耐抗生素的"超级细菌"正在猫狗和主人之间传播但尚未致病葡萄牙的一项研究发现,葡萄牙的六只宠物和英国的一只宠物携带的抗生素耐药菌与在其主人身上发现的相似。这一发现强调了将拥有宠物的家庭纳入减少抗菌素耐药性传播计划的重要性。抗生素耐药性正在世界各地达到危险的高水平。据估计,全球每年有70万人死于抗药性感染,如果不采取行动,到2050年这一数字将上升到1000万,世界卫生组织(WHO)将抗生素抗性列为人类面临的最大公共卫生威胁之一。众所周知,狗、猫和其他宠物对可导致人类疾病的抗生素耐药性病原体的传播起了作用。葡萄牙里斯本大学兽医学院动物健康跨学科研究中心抗生素耐药性实验室的JulianaMenezes及其同事希望了解,正在接受抗生素治疗的宠物是否与它们的主人分享这种病原体。研究人员对狗和猫及其主人的粪便样本进行了测试,以确定对普通抗生素有抗药性的肠杆菌(一个大的细菌家族,包括大肠杆菌和肺炎克雷伯菌)。他们重点关注对第三代头孢菌素(用于治疗广泛的疾病,包括脑膜炎、肺炎和败血症,被世界卫生组织列为人类医学中最重要的抗生素之一)和碳青霉烯类药物(当其他抗生素失效时的最后一道防线的一部分)的耐药性。这项前瞻性的纵向研究涉及葡萄牙43个家庭的5只猫、38只狗和78个人,以及英国7个家庭的7只狗和8个人。在葡萄牙,一只狗(1/43只宠物,2.3%)被一株产生多药耐药性的OXA-181大肠杆菌定植。OXA-181是一种能赋予碳青霉烯类药物抗性的酶。3只猫和21只狗(24/43只宠物,55.8%)和28位主人(28/78,35.9%)怀有产生ESBL/Amp-C的肠杆菌。这些细菌对第三代头孢菌素有抵抗力。在8个家庭中,2个养猫的家庭和6个养狗的家庭,宠物和主人都携带ESBL/AmpC产生的细菌。在其中6个家庭中,从宠物(1只猫和5只狗)和它们的主人身上分离出的细菌的DNA是相似的,这意味着这些细菌可能是在动物和人类之间传递。目前还不知道它们是由宠物转移到人身上,还是反过来。在英国,一只狗(1/7,14.3%)被产生NDM-5和CTX-M-15β-内酰胺酶的多重耐药大肠杆菌定植。这些大肠杆菌对第三代头孢菌素、碳青霉烯类和其他几个系列的抗生素有耐药性。从五只狗(5/7,71.4%)和三个主人(3/8,37.5%)中分离出产ESBL/AmpC的肠杆菌。在两个养狗的家庭中,宠物和主人都携带产ESBL/AmpC的细菌。在其中一个家庭中,从狗和主人身上分离出的细菌的DNA是相似的,这表明细菌可能从一个人传给另一个人。转移的方向尚不清楚。所有的狗和猫都成功地治疗了它们的皮肤、软组织和泌尿道感染。主人没有受到致病感染,因此不需要治疗。博士生Menezes女士说:"在这项研究中,我们提供的证据表明,对第三代头孢类药物(至关重要的抗生素)有抗药性的细菌正在从宠物身上传给它们的主人。狗和猫可能有助于这类细菌在社区的传播和持续存在,将它们纳入抗菌素耐药性的评估中是非常重要的。主人可以通过保持良好的卫生习惯来减少耐多药细菌的传播,包括在收集狗或猫的粪便后,甚至在抚摸它们之后洗手。"本文基于欧洲临床微生物学和传染病大会(ECCMID)年度会议上的口头报告208。...PC版:https://www.cnbeta.com.tw/articles/soft/1355077.htm手机版:https://m.cnbeta.com.tw/view/1355077.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人