日本AI机器人培养诱导多功能干细胞

日本AI机器人培养诱导多功能干细胞(早报讯)据共同社报道,日本理化学研究所(RIKEN)近日成功用人工智能机器人培养出诱导多功能干细胞(inducedpluripotentstemcell,简称iPS细胞),并通过iPS细胞高效培养出视网膜细胞。在正常情况下,若要找出最合适培养细胞的条件,即便是熟练的技术人员也须耗时一年左右,但使用人工智能机器人则仅需三分之一的时间(约4个月),就能达到同等水平的效率。研究团队说,这项实验使用的人型实验机器人叫“MAHORO”,具有类似人类的手臂,能根据药物浓度和注射速度等七项条件逐渐变化。通过反复实验,机器人已找到最佳的培养程序,实验成功率已经从最初的40%至50%,提升到91%,中间只花了120天。RIKEN高级研究员神田元纪(MotokiKanda)说:“如果许多实验可以通过应用这个结果实现自动化,那么研究人员就可以专注于其他实验。这应该可以加速生命科学领域的研究。”发布:2022年7月3日11:51PM

相关推荐

封面图片

Nature: 用确定的化学混合物诱导小鼠全能干细胞

Nature:用确定的化学混合物诱导小鼠全能干细胞https://www.nature.com/articles/s41586-022-04967-9注:该文章尚未经过编辑摘要:在小鼠中,只有来自2细胞胚胎的子宫和胚泡是真正的全能干细胞(TotiSCs),能够产生胚胎和胚胎外组织的所有分化细胞,并形成整个生物体。然而,在没有生殖细胞的情况下,是否以及如何在体外建立代表生命之初的TotiSCs,仍然是一个挑战。在此,我们展示了通过三种小分子,即TTNPB、1-Azakenpaullone和WS6的组合,从小鼠多能干细胞(PSCs)中诱导并长期维持ToniSCs。这些细胞,我们命名为ciTotiSCs(化学诱导的全能干细胞),在转录组、表观基因组和代谢组水平上与小鼠全能2C胚胎期细胞相似。此外,ciTotiSCs表现出双向发育的潜力,能够在体外和畸胎瘤中产生胚胎和胚外细胞。此外,在注射到8细胞的胚胎后,ciTotiSCs对胚胎和胚胎外系都有很高的贡献。我们对TotiSCs的诱导和维持的化学方法提供了一个明确的体外系统,以操纵和了解全能状态,从非种系创造生命。

封面图片

研究人员利用人类细胞培养出人造鼠肺

研究人员利用人类细胞培养出人造鼠肺日本东北大学和加拿大多伦多大学研究人员在新一期英国《科学报告》杂志上发布成果说,他们将人类细胞注入小鼠肺部组织后培育出“混合人造肺”。将其移植到其他小鼠体内后,血液能流到肺的各个角落。公报说,随着多功能干细胞(包括诱导多功能干细胞和胚胎干细胞)进入临床应用,利用患者自身细胞培养不会发生排异反应的人造移植器官逐渐成为可能。研究人员表示,下一步准备将人体细胞注入猪肺,培养人造肺。猪肺和人肺尺寸相近,如果实验能够成功,那么离人造器官临床应用就更近了一步。

封面图片

中国首次实现人类干细胞太空早期造血

中国首次实现人类干细胞太空早期造血中国首次实现人类干细胞在太空环境下进行早期造血。据央视新闻星期六(6月3日)报道,随着此前天舟六号的成功发射对接,神舟十五号乘组航天员已协助展开为期六至15天的细胞在轨培养实验,其中包括首次开展在太空条件下,人胚胎干细胞体外造血分化的研究。中国科学院深圳先进技术研究院生物医药与技术研究所研究员雷晓华受访时说,神舟十五号航天员已成功在轨分化类似于鹅卵石的一个造血干细胞,而这个造血干细胞会经过再进一步成熟和分化,形成类似一个葡萄串的造血干细胞群。从实验结果来看,中国已成功实现首次人类干细胞在太空条件下造血,完成第一个实验目标。雷晓华称,下阶段,科研团队需要对这个造血干细胞群进行全方位检测和分析,通过比对地面的对照组,筛选出太空环境影响人多能干细胞早期造血分化的相关基因。科研团队后续还将利用天舟七号或天舟八号飞船的机会,继续开展能诱导多能干细胞在空间环境下的三维生长研究。2017年,中国科研团队利用天舟一号货运飞船开展了小鼠胚胎干细胞的增殖、分化研究。结果表明,空间微重力环境对小鼠胚胎干细胞的3D生长及干性的维持提供了有利条件,干细胞在太空培养呈现出更优于地面的3D生长方式且维持更高水平的多能性基因表达。近年来,国外科学家也多次报道了利用空间飞行任务中开展的干细胞生长和组织再生方面研究,如针对航天员贫血的血液干细胞等研究。

封面图片

神舟十五号首次开展空间环境人类多能干细胞体外造血分化研究

神舟十五号首次开展空间环境人类多能干细胞体外造血分化研究中国科学院研究人员表示,我们已经在轨分化到了类似于鹅卵石一样的一个造血干细胞,那么这些造血干细胞它会经过再进一步的成熟和分化,类似一个葡萄串的一样的一个造血干细胞群,这一次实验事实上我们已经实现了第一个实验目标,首次实现了人类干细胞的太空造血。近年来,国外科学家也多次报道了利用空间飞行任务中开展的干细胞生长和组织再生方面研究,如针对航天员贫血的血液干细胞等研究。专家介绍,利用独特的空间微重力环境或许是解决干细胞维持未分化增殖、增强诱导分化效率和提高组织三维构建水平的一种新途径。这为未来利用干细胞再生来服务于人类健康,可以提供更多有益的帮助。目前,中国空间站三舱已经部署了多个科研领域的科学实验柜,支持空间站开展更大规模的空间研究实验和新技术试验。变重力实验柜还开展了5种低重力水平下颗粒材料振动流化特性的研究,观测了接近0G重力水平下颗粒体系的自由状态,以及0G—2G重力水平下颗粒运动的典型状态。在神舟十五号乘组的协助下,科研团队还开展了燃烧科学实验、高温材料样品实验、流体物理实验等。...PC版:https://www.cnbeta.com.tw/articles/soft/1363245.htm手机版:https://m.cnbeta.com.tw/view/1363245.htm

封面图片

干细胞疗法可再生受损的心脏细胞并改善功能

干细胞疗法可再生受损的心脏细胞并改善功能心脏缺血最常见的原因是动脉粥样硬化,即动脉中斑块的堆积。如果动脉被斑块完全阻塞,则会导致心脏病发作或心肌梗塞。以前的研究已经研究了逆转由缺血引起的心肌损伤的方法,包括移植人类多能干细胞(hPSC),这些细胞是未成熟的细胞,可以通过分裂和分化为构成人体的主要细胞群来自我更新.它们可用于创建所需的任何细胞或组织。在临床前试验中,新加坡国立杜克大学(Duke-NUS)医学院的研究人员培养了实验室制造的hPSC,并使它们分化为称为心脏祖细胞的前体心肌细胞。该过程的关键是研究人员使用层粘连蛋白,层粘连蛋白是一种指导某些组织细胞类型发育的蛋白质。在这里,研究人员在心脏中发现的层粘连蛋白类型上培养了祖细胞。将大约2亿个11日龄的祖细胞注射到受损的猪心肌中。人们看到它们在受损组织中迅速组织起来,产生心肌移植物并继续成熟。“早在注射后4周,就出现了快速植入,这意味着身体正在接受移植的干细胞,”该研究的第一作者LynnYap说。“我们还观察到新心脏组织的生长和功能发育的增加,这表明我们的方案有可能发展成为一种有效且安全的细胞治疗手段。”研究人员还发现心脏的泵血能力有了显着改善,并且由缺血引起的肌肉死亡区域的面积减少了。前体干细胞移植前(左)和移植后(右)猪心脏的电解剖图。紫色区域代表健康组织,而其他颜色区域代表受伤组织。先前的研究移植了已经开始跳动的心肌细胞,这导致了致命的心律失常。在目前的研究中,研究人员使用了在移植后成熟并开始跳动的非跳动细胞。使用不跳动的心脏细胞可将心律失常的发生率降低一半。当发生心律失常时,它们是暂时的,并会在大约30天内自行解决。此外,移植的细胞不会引发肿瘤形成,这是与干细胞疗法相关的另一个问题。研究人员表示,由于使用层粘连蛋白来培养干细胞,他们的技术易于重现且安全。“为确保患者安全,基于细胞的疗法必须显示出一致的疗效和可重复的结果,”该研究的合著者之一恩里科·佩特雷托(EnricoPetretto)说。“通过广泛的分子和基因表达分析,我们证明了我们基于层粘连蛋白的方案用于生成治疗心脏病的功能性细胞具有高度可重复性。”该研究的有希望的结果可能会导致一种可以再生因缺血受损的心肌的治疗方法。该研究的通讯作者KarlTryggvason说:“我们的技术使我们更接近于为心力衰竭患者提供一种新的治疗方法,否则他们将带着患病的心脏生活并且康复的机会很小。它还将通过提供一种经过试验和测试的方案对再生心脏病学领域产生重大影响,该方案可以恢复受损的心肌,同时降低不良副作用的风险。”该研究发表在NPJ再生医学杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1364387.htm手机版:https://m.cnbeta.com.tw/view/1364387.htm

封面图片

科学家发现清除细胞记忆的"绝妙"方法 可更好地将细胞重编程为干细胞

科学家发现清除细胞记忆的"绝妙"方法可更好地将细胞重编程为干细胞科学家们开发出一种革命性的技术,称为"瞬时无处理(TNT)重编程"。这种方法可以对人体细胞进行重编程,使其更接近胚胎干细胞,从而解决再生医学中一个长期存在的问题。该团队的突破有望为细胞疗法和研究设定新标准。(人类iPS细胞)。细胞重编程的历史与挑战2000年代中期,人们发现,人体的非生殖成体细胞(称为"体细胞")可以被人为地重新编程为类似胚胎干细胞(ES)的状态,从而有能力生成人体的任何细胞,这是一项革命性的进步。将人类体细胞(如皮肤细胞)人工重编程为这些所谓的诱导多能干细胞(iPS)的变革性能力,提供了一种制造基本上无限供应的ES样细胞的方法。这在疾病建模、药物筛选和细胞疗法中有着广泛的应用。李斯特教授说:"然而,传统重编程过程中一直存在的一个问题是,iPS细胞会保留其原始体细胞状态的表观遗传记忆,以及其他表观遗传异常。这会造成iPS细胞和它们应该模仿的ES细胞以及随后从它们衍生出来的特化细胞之间的功能差异,从而限制了它们的使用"。介绍TNT重编程技术莫纳什生物医学发现研究所的何塞-波罗教授解释说,他们现在已经开发出一种新方法,称为瞬时无处理(TNT)重编程,可以模拟胚胎发育早期发生的细胞表观基因组重置。他说:"这大大减少了iPS细胞和ES细胞之间的差异,最大限度地提高了人类iPS细胞的应用效果。"来自西澳大学哈里-珀金斯研究所(HarryPerkinsInstitute)和泰勒森儿童研究所(TelethonKidsInstitute)的计算科学家萨姆-巴克贝里(SamBuckberry)博士是这项研究的共同第一作者,他说,通过研究体细胞表观基因组在整个重编程过程中的变化,他们准确地找到了表观遗传畸变出现的时间,并引入了一个新的表观基因组重置步骤,以避免这些畸变并消除记忆。这项研究的带头人、干细胞科学家刘晓东博士说,新的人类TNT-iPS细胞在分子和功能上都比传统重编程技术产生的细胞更接近人类ES细胞。TNT方法的改进结果第一作者之一、西澳大学哈里-珀金斯研究所的细胞生物学家丹尼尔-波普博士说,用TNT方法产生的iPS细胞比用标准方法产生的iPS细胞更好地分化成许多其他细胞,如神经元祖细胞。第一作者之一、莫纳什大学学生谭佳(音译)说,研究小组的TNT方法是一种"炸药"。"它解决了与传统生成的iPS细胞相关的问题,如果不解决这些问题,从长远来看可能会给细胞疗法带来严重的不利后果。"未来影响与研究波罗教授说,尽管他们取得了突破性进展,但iPS表观基因组畸变及其纠正的确切分子机制还不完全清楚。要了解这些机制,还需要进一步的研究。李斯特教授说:"我们预测,TNT重编程将为细胞疗法和生物医学研究建立一个新的基准,并大大推动其进展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378327.htm手机版:https://m.cnbeta.com.tw/view/1378327.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人