我国首次实现核电商用堆批量生产碳-14同位素

我国首次实现核电商用堆批量生产碳-14同位素 记者20日从中核集团获悉,当天,完成辐照的碳-14靶件从中核集团旗下中国核电投资控股的秦山核电重水堆机组中成功抽出。这是我国首次实现核电商用堆批量生产碳-14同位素。 此前,我国碳-14同位素供应几乎全部依赖进口。利用商用重水堆辐照生产碳-14是秦山核电同位素生产基地建设的首个医用同位素项目。 “此后预计我们每年可以生产150居里左右的碳-14同位素,完全可以满足我国市场需求。”秦山核电相关负责人说。 记者了解到,碳-14是碳元素的一种具有放射性的同位素。碳-14作为示踪剂,广泛应用于农业、化学、医学、生物学等领域,具有极高的医用价值和科研价值,主要应用包括幽门螺杆菌检测、药代动力学研究等。 标签: #碳-14 频道: @GodlyNews1 投稿: @GodlyNewsBot

相关推荐

封面图片

中国实现碳-14供应全面国产化

中国实现碳-14供应全面国产化 碳-14,作为一种具有放射性的碳元素同位素,在农业、化学、医学和生物学等多个领域均展现出广泛的应用价值。尤其在医学领域,碳-14在幽门螺杆菌检测、药代动力学研究以及β射线环境监测系统等方面发挥着至关重要的作用。然而,此前我国几乎全部依赖进口来获取碳-14,价格高昂且供应不稳定,这在一定程度上制约了下游相关产业的快速发展。相较于过去主要依赖研究堆生产碳-14的方式,秦山核电重水堆机组凭借其高中子通量、宽敞的堆内辐照空间以及长期稳定运行的高功率特性,成功实现了在不影响发电能力和安全运行的前提下,稳定供应和安全生产放射性核素,并且大幅降低了生产成本。此次成功出堆的碳-14靶件,经过后端处理,预计将于2024年底正式投放市场。预计产量将充分满足国内需求,不仅有力推动我国同位素应用产业链的发展,还将为下游医疗企业研发高新型核药和核医疗产业提供强有力的支持,为整个国内同位素应用产业注入新的活力。值得关注的是,秦山核电同位素生产基地的建设正在稳步推进中。碳-14的生产仅仅是该基地的首个医用同位素项目,而在碳-14靶件出堆的同时,秦山核电还同步开展了堆顶辐照生产同位素装置的安装和调试工作。该装置投入使用后,将具备大规模辐照生产镥-177、钇-90等同位素的能力,为我国同位素产业的发展揭开新的篇章。 ... PC版: 手机版:

封面图片

秦山核电在线辐照生产医用同位素装置全面建成

秦山核电在线辐照生产医用同位素装置全面建成 镥-177、锶-89和钇-90等多种国内当前紧缺的短半衰期医用同位素将在今年下半年配套厂房建成投产后进入规模化生产阶段。该辐照装置是秦山核电继碳-14辐照生产项目后,依托重水堆重点打造的另一个医用同位素规模化生产平台。秦山核电介绍,“以往我们生产钴-60、碳-14,需要等到两年左右机组停堆检修时期再取出来,这个装置投用后,无需停堆即可生产镥-177、锶-89和钇-90等短半衰期医用同位素,产能可充分满足国内需求。”该平台具备在重水堆机组正常运行期间在线装卸靶盒的能力,打破我国主要堆照医用同位素长期依赖进口的局面。该辐照装置为我国首套商业堆在线批量化辐照生产同位素装置,具有定位精度高、传动可靠、全程屏蔽、生产产量高等特点。 ... PC版: 手机版:

封面图片

中核集团首次生产出克量级镱-176同位素并制成镥-177

中核集团首次生产出克量级镱-176同位素并制成镥-177 日前,该产品顺利通过了中国工程物理研究院核物理与化学研究所CMRR堆的辐照制备,获得了1.59Ci的无载体镥-177产品,各项指标全部合格,放射性核纯度大于99.9%,打通了国产核药产业链的关键一环!据了解,镥-177是一种理想的放射性医疗同位素,所发射出的β粒子非常适合作为前列腺癌、乳腺癌等病症的新型放射性免疫疗法药剂,所发射出的y射线适合用于诊断显像及放射治疗效果评价,在医学临床上具有广泛的应用前景。此项技术成果标志着由核理化院/公司攻关团队采用先进技术生产的镱-176同位素产品,完全满足核医药生产的技术指标,实现了我国镜-176同位素材料供应的自主可控,为核医药自主可控发展,核药关键材料打破垄断、进军国际市场提供了重要保障。围绕该项成果,核理化院/公司正在积极整合资源部署工程化应用,预计2025年能够形成百克量级的镜-176同位素年生产能力。 ... PC版: 手机版:

封面图片

海量数据如何存储?中国科学家实现光存储Pb量级首次突破

海量数据如何存储?中国科学家实现光存储Pb量级首次突破 近日,中国科学院上海光学精密机械研究所(下称“上海光机所”)与上海理工大学等科研单位合作,在超大容量超分辨三维光存储研究中取得突破性进展。这对我国在信息存储领域突破关键核心技术、实现数字经济的可持续发展具有重大意义。相关研究成果于2月22日发表在《自然》(Nature)杂志。这是国际上首次实现Pb量级的超大容量光存储。仅仅20克透明轻薄的光盘,来源:《自然》小空间存更多数据所谓存力,是以数据存储为核心,包含性能表现、安全可靠、绿色低碳在内的综合数据存储服务能力,是激活数据要素的核心动能。本次成果中,研究团队利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破了衍射极限的限制,实现了点尺寸为54nm、道间距为70nm的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达Pb量级,对于我国在信息存储领域突破关键核心技术、实现数字经济的可持续发展具有重大意义。该论文第一作者单位为上海光机所,通讯作者为上海光机所阮昊研究员和上海理工大学光子芯片研究院院长顾敏院士,上海理工大学文静教授。上海光机所博士后赵苗和上海理工大学文静教授为并列第一作者。项目得到了上海市科委和国家重点研发计划等支持。阮昊对第一财经解释道,光存储技术具有绿色节能、安全可靠、寿命长达50~100年的独特优势,非常适合长期低成本存储海量数据,然而受到衍射极限的限制,传统商用光盘的最大容量仅在百GB量级。在信息量日益增长的大数据时代,突破衍射极限、缩小信息点尺寸、提高单盘存储容量长久以来一直都是光存储领域的追求。1994年德国科学家Stefan W. Hell教授提出受激辐射损耗显微技术,首次证明了光学衍射极限能够被打破,并在2014年获得诺贝尔化学奖,经过20多年的发展,在显微成像、激光纳米直写等多个领域实现了光学超分辨成果,信息的超分辨写入已经得到了解决。从光学显微技术到光存储技术,都被光学衍射极限所限制。在2021年Science发布的全世界最前沿的125个科学问题中,突破衍射极限限制更是在物理领域高居首位。该超分辨光盘的成功研制在信息写入和读出都突破了这一物理学难题,有助于我国在存储领域突破关键核心技术,将在大数据数字经济中发挥重大作用,以满足信息产业领域的重大需求。“所以这一次我们解决了光存储领域信息写入和读出均受衍射极限限制的问题,实现了超分辨的记录,极大地提高了光存储的密度和容量。因为单盘的容量是1. 6个Pb,相当于1万张蓝光光盘,这是一个突破性的进展,为大数据存储提供了绿色节能长寿命的方案。”研究人员告诉记者,他们也和目前的硬盘、光盘技术进行了一些对比,在技术性能上提高了最高的光存储面密度,可以在数据中心档案存储上实现突破性应用,解决大容量和节能的存储技术难题。《自然》审稿人的评价该成果道:“这是一种具有突破性创新的Pb级光存储技术…”“与现有其它技术相比,该技术在性能方面提供了最高的光存储面密度…”“研究成果可能会带来数据中心档案数据存储的突破,解决大容量和节能的存储技术难题…”。(来源:上海光机所)帮数据中心处理“冷数据”随着算力作为数字经济时代新的生产力迅速发展,各地也在加码布局数据中心。近年来,我国算力相关政策密集出台。2020年4月,国家发改委首次将智算中心等算力基础设施纳入“新基建”的范畴;2021年5月,国家发改委等四部门联合发布了《全国一体化大数据中心协同创新体系算力枢纽实施方案》,首次提出全国算力网络枢纽节点布局;2022年2月,国家发改委等三部门同意了京津冀、长三角、粤港澳大湾区等8地启动国家算力枢纽节点建设,并规划了10个国家数据中心集群,标志着“东数西算”工程正式启动。就在近日,国家发改委、国家数据局、中央网信办、工信部、国家能源局五部门日前联合印发《深入实施“东数西算”工程加快构建全国一体化算力网的实施意见》(下称《实施意见》),提出到2025年底,普惠易用、绿色安全的综合算力基础设施体系初步成型。而在数据的分类中,有热数据、冷数据、温数据等。“冷数据”一般指的是那些时效性需求不太高的,“热数据”是对处理时间要求高、需要立刻做决策并运算的,例如自动驾驶、远程医疗等,“温数据”则是介于“冷数据”和“热数据”之间的。阮昊对记者解释,他们的成果主要存储的就是冷数据。“在所有数据中,80%以上都是冷数据,这些数据使用频率很少,但是需要永久保存,比如大科学装置做出来的实验数据。这类实验做一次非常不容易,这些访问速率没那么快但是又很重要的数据都要安全性地保存,我们的成果主要用在这类数据上面,因此特别适合数据中心的使用。”他补充举例,像处理热数据的固态硬盘、手机存储卡、存储条都很贵,处理百分之十几的温数据可以用磁存储、磁硬盘,另外80%冷数据就可以用光盘。Pb级光盘制备及读写方式示意图,来源:《自然》研究团队介绍,未来他们将加快原始创新和关键技术攻关,推动超大容量光存储的集成化和产业化进程,并拓展其在光显微成像、光显示、光信息处理领域的交叉应用,产出更多更优秀的创新成果。“关于产业化我们计划是5年左右应该有一个可以用的光盘和机器给消费者看。这当然也需要企业界和科研界一起努力。”阮昊说。 ... PC版: 手机版:

封面图片

通用原子公司正在研制小型商用粒子加速器

通用原子公司正在研制小型商用粒子加速器 杰斐逊实验室准备新紧凑型加速器腔体的团队成员一个由公共和私营部门研究人员组成的团队利用现成的工业部件,制造出了一个小型粒子加速器原型,这可能会对该技术的商业应用产生重大影响。在这种思想的驱使下,来自美国能源部托马斯-杰斐逊国家加速器设施和能源与国防公司通用原子公司等一系列机构的科学家们开始寻找制造更经济、更紧凑的电子束粒子加速器的方法。得益于两项新的创新,他们取得了成功。获得转让其中第一个突破是加速器腔体的设计方式。在创建原型的过程中,团队成员知道他们想把重点放在超导射频(SRF)粒子加速上,就像杰斐逊实验室连续电子束加速器设备中的系统一样。这种加速器通常内衬一种叫做铌的金属,这种金属在接近绝对零度时具有超导性。正在通用原子公司组装的原型腔体 图/通用原子能公司在新的原型中,研究小组首先使用铌,然后在其上添加了一层铌锡合金。这意味着腔体可以在更高的温度下工作,无需进行如此强烈的超强冷却。接下来,科学家们首先在腔室外部覆盖了一层 2 毫米(0.08 英寸)的覆铜板,然后又覆盖了一层更厚的 5 毫米(0.2 英寸)覆铜板。这样的设计使得腔室能够更容易地通过传导过程将粒子加速过程中产生的热量传递到室外。杰斐逊实验室的科学家 Gianluigi"Gigi"Ciovati 是该项目的负责人,他说:"基本上是通过冷喷和电镀相结合的方法,在空腔外部建造了一个铜热毯。这为内表面产生的热量提供了一条高导热路径,使热量转移到外表面,然后流向低温冷却器"。得益于这种基于传导的设计,该系统可以在 4 开尔文(-452 °F)的温度下运行,是大型系统所需温度的两倍。制造加速器的铜结构 图/通用原子能公司保持冷静这就引出了第二项创新:低温冷却器。在大型粒子加速器中,系统通常使用液氦低温设备进行冷却。这种设备不仅造价昂贵,而且维护费用也很高。在新原型中,研究小组决定使用现成的低温冷却器,这种制冷系统主要用于保持许多核磁共振成像仪中超导磁体的冷却。低温冷却器的"冷头"朝向加速器腔体,结果发现它们能成功地将新的传导腔体冷却到所需的 4 开尔文。Ciovati说:"突破性技术之一是能够利用这些紧凑型商用设备通过传导对空腔进行冷却,而不是使用大型、复杂和昂贵的低温冷却设备。我们正在研究的系统不需要液氦低温设备。"支架车上的 HTC 横截面效果图 图/通用原子能公司测试通用原子公司在一个被称为水平低温恒温器的系统中对新设计进行了测试。通用原子公司磁聚变能源(MFE)部门的科学家德鲁-帕卡德(Drew Packard)说:"首先,将低温恒温器中的空气抽空,然后将空腔冷却到超导阈值以下,并用小射频信号进行激励,以展示电加速梯度。通过诊断,我们证明传导冷却腔体的性能达到了与之前在杰斐逊实验室进行的液氦测试相同的规格。"研究人员说,事实上,原型机产生的峰值表面磁场达到了 50 毫特斯拉,这是迄今为止类似装置产生的最高磁场。研究小组表示,这证明其新型紧凑型加速器可以产生增益为 100 万电子伏特(MeV)的电子,因此具有商业可行性。例如,这种系统可以帮助生产核医学用同位素,或帮助净化环境。"电子束在各种商业应用中都非常有用,"帕卡德说。"这种紧凑型超导加速器技术在环境修复方面具有相当大的潜力,水净化就是一个例子。未经处理的水中可能含有不安全浓度的化学品,如药品或全氟辛烷磺酸,以及有害病原体,如大肠杆菌或沙门氏菌。电子束能非常有效地撕裂复杂分子和有机物,并将其分解成对人类健康和环境威胁较小的基本粒子。"该团队表示,现在将探索如何增强该系统,使其电子束能够更深入地穿透材料,同时还将寻找在其上添加模块的方法,使其性能更加出色。描述该系统的研究成果已发表在《物理评论加速器与光束》杂志上。 ... PC版: 手机版:

封面图片

有关稀土元素钷的新发现将改写化学教科书

有关稀土元素钷的新发现将改写化学教科书 概念图展示了小瓶中的稀土元素钷,周围环绕着有机配体。ORNL 科学家发现了钷的隐藏特征,为研究其他镧系元素开辟了道路。图片来源:Jacquelyn DeMink,艺术;Thomas Dyke,摄影;ORNL,美国能源部钷于 1945 年在克林顿实验室(即现在的美国能源部橡树岭国家实验室)被发现,并一直在橡树岭国家实验室进行微量生产。尽管稀土元素被用于医学研究和长寿命核电池,但它的一些特性仍然难以捉摸。它以神话中的泰坦命名,泰坦将火传递给人类,其名字象征着人类的奋斗。美国国家实验室的突破性研究共同领导这项研究的ORNL科学家亚历克斯-伊万诺夫(Alex Ivanov)说:"整个想法就是探索这种非常罕见的元素,以获得新的知识。意识到这是在这个国家实验室和我们工作的地方发现的,我们就觉得有义务进行这项研究,以维护 ORNL 的传统"。由 ORNL 领导的科学家团队制备了一种钷的化学复合物,从而首次在溶液中描述了钷的特性。因此,他们通过一系列细致的实验揭开了这种原子序数为 61 的极其罕见镧系元素的秘密。这项具有里程碑意义的研究于 5 月 22 日发表在《自然》杂志上,标志着稀土研究取得了重大进展,并有可能改写化学教科书。左起:亚历克斯-伊万诺夫(Alex Ivanov)、桑塔-扬松-波波娃(Santa Jansone-Popova)和伊尔亚-波波夫斯(Ilja Popovs),均来自美国国家实验室。图片来源:Carlos Jones/ORNL,美国能源部镧系元素的特性共同领导这项研究的 ORNL 的 Ilja Popovs 说:"由于没有稳定的同位素,钷是最后发现的镧系元素,也是最难研究的镧系元素。大多数稀土元素都是镧系元素,即元素周期表上从57(镧)到71(镥)的元素。它们具有相似的化学性质,但大小不同。"人们对其他 14 种镧系元素都很了解。它们是具有有用特性的金属,在许多现代技术中不可或缺。它们是激光器、风力涡轮机和电动汽车中的永久磁铁、X 射线屏幕甚至抗癌药物等应用的主力军。"数以千计的关于镧系元素化学的出版物中都没有钷。这对所有科学来说都是一个明显的空白,"ORNL 的 Santa Jansone-Popova 说,她是这项研究的共同负责人。"科学家们不得不假设钷的大部分特性。现在我们可以实际测量其中的一些特性了。"左起:Richard Mayes、Frankie White、April Miller、Matt Silveira 和 Thomas Dyke。图片来源:Carlos Jones/ORNL,美国能源部独特的研究能力这项研究依赖于能源部国家实验室的独特资源和专业知识。作者利用研究反应堆、热电池和超级计算机,以及 18 位科学家在不同领域积累的知识和技能,详细描述了对溶液中钷复合物的首次观测。ORNL 的科学家将放射性钷与称为二甘醇酰胺配体的特殊有机分子结合或螯合。然后,他们利用 X 射线光谱测定了络合物的性质,包括钷与邻近原子的化学键长度这是科学界的创举,也是元素周期表中长期缺失的部分。钷非常稀有,在任何时候,地壳中自然存在的钷只有一磅左右。与其他稀土元素不同,由于钷没有稳定的同位素,因此只能获得微量的合成钷。在这项研究中,ORNL 小组生产了半衰期为 2.62 年的同位素钷-147,其数量和纯度足以研究其化学特性。ORNL 是美国唯一的钷-147 生产商。站在 ORNL 放射化学工程开发中心前的钷研究小组成员,从左至右依次为:Santanu Roy、Thomas Dyke、Ilja Popovs、Richard Mayes、Darren Driscoll、Frankie White、Alex Ivanov、April Miller、Subhamay Pramanik、Santa Jansone-Popova、Sandra Davern、Matt Silveira、Shelley VanCleve 和 Jeffrey Einkauf。资料来源:Carlos Jones/ORNL, 美国能源部值得注意的是,研究小组首次展示了整个镧系元素在溶液中的镧系收缩特征,包括原子序数为 61 的钷。镧系元素收缩是指原子序数在 57 到 71 之间的元素比预期的要小。随着这些镧系元素原子序数的增加,其离子半径也随之减小。这种收缩产生了独特的化学和电子特性,因为相同的电荷被限制在一个不断缩小的空间内。ORNL 的科学家们得到了一个清晰的钷信号,这使他们能够更好地确定整个系列的趋势形状。伊万诺夫说:"从科学的角度来看,这确实令人震惊。当我们获得所有数据后,我感到非常震惊。这种化学键的收缩在原子序列中是加速的,但在钷之后,这种收缩就大大减慢了。这是了解这些元素的化学键特性及其在元素周期表中的结构变化的一个重要里程碑。"其中许多元素,如镧系元素和锕系元素的应用范围很广,从癌症诊断和治疗到可再生能源技术和用于深空探测的长寿命核电池。对技术和科学的影响扬松-波波娃表示,这一成果将减轻分离这些宝贵元素的工作难度。长期以来,研究小组一直致力于全系列镧系元素的分离,"但钷是最后一块拼图。这相当具有挑战性,"她说。"现代先进技术无法将所有这些镧系元素作为混合物使用,因为首先需要将它们分离。这就是收缩变得非常重要的地方;它基本上使我们能够分离它们,而这仍然是一项相当困难的任务。"研究小组在该项目中使用了能源部的多个主要设施。在 ORNL,钷在高通量同位素反应堆(能源部科学办公室的用户设施)合成,并在放射化学工程开发中心(多用途放射化学处理和研究设施)纯化。然后,研究小组在位于能源部布鲁克海文国家实验室的能源部科学办公室用户设施国家同步辐射光源 II 进行了 X 射线吸收光谱分析,特别是在由美国国家标准与技术研究院资助和运营的材料测量光束线工作。研究小组还在橡树岭领先计算设施(Oak Ridge Leadership Computing Facility)进行了量子化学计算和分子动力学模拟,该设施是能源部科学办公室在 ORNL 的用户设施,使用的是实验室的 Summit 超级计算机,这是当时唯一能够提供必要计算的计算资源。此外,研究人员还使用了 ORNL 科学计算和数据环境的资源。他们预计未来的计算将在 ORNL 的 Frontier 超级计算机上进行,这是世界上最强大的超级计算机,也是第一个超大规模系统,每秒能进行超过五万亿次计算。波波夫斯强调说,ORNL领导取得的成就归功于团队合作。他说,《自然》杂志论文的18位作者中的每一位都对项目至关重要。科学家们说,这项成果为研究的新时代奠定了基础。波波夫斯说:"任何我们称之为现代技术奇迹的东西,都会或多或少地包含这些稀土元素。我们正在添加缺失的环节。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人