研究人员在30多亿年前的生态系统中发现了复杂的微生物群落

研究人员在30多亿年前的生态系统中发现了复杂的微生物群落 微生物被认为是地球上最早的生命形式,其证据蕴藏在 35 亿年前的岩石中。这些岩石中含有这些远古生物留下的地球化学和形态标记,如特定的化合物和结构。然而,生命起源于地球的时间和地点,以及这些早期微生物群落中物种多样性的形成时间,至今仍不清楚。证据很少,而且常常存在争议。 PC版: 手机版:

相关推荐

封面图片

开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

珊瑚白化:表层下微生物混乱的催化剂

珊瑚白化:表层下微生物混乱的催化剂 2019 年白化事件期间,研究人员在法属波利尼西亚莫奥里亚的珊瑚礁上潜水。图片来源:Milou Arts of NIOZ由夏威夷大学马诺阿分校(UH)和荷兰皇家海洋研究所(NIOZ)领导的新研究发现,当珊瑚白化发生时,珊瑚会向周围的水中释放独特的有机化合物,这不仅会促进细菌的整体生长,而且会选择可能会进一步对珊瑚礁造成压力的机会性细菌。"我们的研究结果表明,短期热应力和长期白化的影响可能会超出珊瑚的范围,延伸到水体中,"共同第一作者、马诺阿大学热带农业与人力资源学院博士后研究员、马诺阿大学海洋与地球科学技术学院(SOEST)前博士生韦斯利-斯帕拉贡(Wesley Sparagon)说。研究小组成员包括来自马诺阿大学、国家海洋研究所、斯克里普斯海洋学研究所和加州大学圣巴巴拉分校的科学家,他们对2019年法属波利尼西亚穆雷阿岛白化事件期间收集的白化和未白化珊瑚进行了实验。这项研究的资深作者、SOEST 教授克雷格-尼尔森(Craig Nelson)说:"尽管珊瑚白化是一个有据可查的现象,而且在全球珊瑚礁中越来越普遍,但有关珊瑚礁水柱微生物学和生物地球化学影响的研究却相对较少。"作者 Irina Koester 博士(左)和 Jessica Bullington 博士(右)以及共同第一作者 Wesley Sparagon 博士(中)在莫奥里亚的甘普站使用蠕动泵对微生物群落进行采样。图片来源:克雷格-尼尔森,马诺阿大学/ SOEST实验结果和微生物反应在加热实验中,研究小组确定,与未漂白的珊瑚相比,受热胁迫的珊瑚和漂白的珊瑚在应对热胁迫时会散发出不同成分的有机物。这些独特的化合物为周围水域中的微生物群落提供了营养,使其数量增加。斯帕拉贡说:"有趣的是,对白化珊瑚渗出物做出反应的微生物与在健康珊瑚渗出物上生长的微生物截然不同。而且,快速生长的机会主义者和潜在病原体的丰度更高。这些微生物群落在受压珊瑚周围的生长可能会通过窒息或引入疾病对珊瑚造成伤害。"作者 Zach Quinlan 博士(左)和共同第一作者 Milou Arts(右)使用蠕动泵收集溶解有机碳样本。资料来源:Wesley Sparagon,马诺阿大学最令人惊讶的是,珊瑚释放化合物的这种变化发生在研究中经历过任何压力的珊瑚身上:已受热但尚未漂白的珊瑚、既受热又漂白的珊瑚以及之前在野外漂白过的珊瑚。NIOZ的共同第一作者米卢-阿茨(Milou Arts)说:"这表明,这一过程发生在珊瑚白化的整个过程中,从热应力开始一直到恢复。重要的是,它在热应力下的健康珊瑚中最为明显,这表明它在热应力开始时影响最大,可能会将珊瑚推向更严重的白化,最终导致死亡。"研究人员正在积极研究如何识别水体中的化合物和微生物,它们可以作为珊瑚礁受到压力时的预警系统。这可以加强或补充其他珊瑚礁保护工作,特别是在发生灾难性破坏之前识别珊瑚礁压力方面。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关 智利北部的阿塔卡马沙漠是世界上最干旱的非极地沙漠,这里的动植物种类极少。由于通常十年才降一次雨,这片沙漠非常干燥,以至于美国国家航空航天局(NASA)将其作为火星地貌的替身。但是,在这干涸的地表下生活着什么呢?新的研究表明,它非常小,数量非常多,而且非常古老。虽然阿塔卡马沙漠的干旱意味着高等生物稀少,但众所周知,多种多样的细菌在这里的土壤中占主导地位。不过,研究人员的目标是深入研究,看看地表下一米多(3.3 英尺)的地方生活着哪些种类的微生物。阿塔卡马沙漠最干燥的地方之一永盖山谷(Yungay Valley)一个龟裂的洼地 卢卡斯-霍斯特曼/德国波茨坦联邦理工学院他们选择的地点位于云盖山谷的一个普拉亚(playa)地区,这是沙漠超干旱核心地区最干旱的地方之一。普拉亚是曾经包含地表水体的洼地或盆地;它们本质上是干涸的湖床。在其他地方,矿物石膏和无水石膏通常靠近地表,在上部 50 厘米/20 英寸的范围内,而在普雷亚地区,它们被埋在大约 2 米/6.6 英尺的深处。相反,无水石膏遇水后会转化为石膏。当他们挖掘到地下 4.2 米/13.8 英尺深处时,研究人员发现了石膏、无水石膏和海绿石(俗称岩盐)等盐类堆积物,以及阳离子(钠、钙)和阴离子(硫酸盐、硝酸盐、氯化物)。根据地下深度绘制的矿物、阳离子和阴离子丰度图 Horstmann 等人研究人员说:"深度为 184 厘米(72.4 英寸)的剖面上半部分主要由淤泥沉积物组成,间或有薄沙层。在 184 厘米至 230 厘米(90.6 英寸)深度之间,沉积物过渡到较粗的质地,包括沙子和卵石。在 230 厘米以下,剖面始终包含[原文如此]卵石至鹅卵石大小的颗粒"。他们使用无脊椎动物衍生 DNA(iDNA)分析,并将其与地球化学分析(X 射线衍射和离子色谱法)进行比较,以研究地下的微生物学。基因测序揭示了不同地层中丰富多样的微生物群落。大部分序列被归类为细菌;0.5%为古细菌,古细菌是一种结构与细菌相似但在进化过程中截然不同的单细胞微生物。古细菌被认为是介于细菌和真核生物或含有 DNA 的细胞含有独特细胞核的生物之间的一个古老群体。三个细菌群(门)占主导地位,占遗传序列的 90% 以上:放线菌属(Actinobacteria)、固形菌属(Firmicutes)和变形菌属(Proteobacteria)。不同地下深度的微生物组成在深度为 2 至 5 厘米(0.8 至 2 英寸)的最上层沉积物中,放线菌占微生物总数的 95%。固着菌的比例很高,从 40 厘米/15.7 英寸深度的 47% 到 30 厘米/11.8 英寸深度的 93%。只有在 70 厘米/27.6 英寸处,才出现了较低的固着菌相对丰度(34%),在 200 厘米/78.7 英寸以下则明显下降。在 200 厘米以下的沉积物中,微生物群落仍然以放线菌为主,深度达 4.2 米。从生态学角度看,洼地沉积相对较新;沉积开始于大约 1.9 万年前。然而,冲积层沉积的年代要久远得多,4.2 米的深度可以追溯到 380 万年前。研究人员认为,他们发现的放线菌群落可能在"早期"就已经在土壤中定植,然后被埋藏在冲积层下。这可能意味着,此前未知的深层生物圈将在极度干旱的沙漠土壤中无限向下延伸。链霉菌是最大的放线菌属 疾病预防控制中心/戴维-贝尔德博士该研究最引人注目的发现之一是,微生物出现在 200 厘米以下的沉积物中,在这些沉积物中,洼地过渡到由河道或冲积平原上沉积的砾石、沙、粉砂或粘土组成的冲积层。原以为这些深度的微生物多样性和丰度会较低,但事实并非如此。在阿塔卡马沙漠,石膏已经被证明可以支持微生物群落。研究人员认为,在这里,较深的石膏沉积物通过提供水分或增加沙漠高干旱土壤的保水性,在微生物多样性方面发挥了至关重要的作用。研究人员说:"尽管石膏在所有沙漠的次表层可能并不普遍,但这种次表层生态位的存在可能表明,全球沙漠的多样性迄今被低估了,在特定情况下,次表层群落可以在地球上最干旱地方的最深层持续存在。这项研究对寻找地球以外的嗜极端生物具有重要意义"。文章开头提到,美国国家航空航天局把阿塔卡马沙漠作为火星的代表。那么,火星也有石膏矿床。那么,火星上的石膏会不会也是火星上微生物生命的水源呢?该研究发表在《PNAS Nexus》杂志上。 ... PC版: 手机版:

封面图片

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展 来自洛桑联邦理工学院(EPFL)和查尔斯大学(Charles University)的科学家们根据"消失的冰川"(Vanishing Glaciers)项目的全球样本发现,随着冰川的缩小,山区溪流中的微生物生命也在蓬勃发展。这种"绿色过渡"导致初级生产增加,改变了当地的碳和营养循环。图片来源:EPFL/Vincent de Stark冰川注入的溪流在夏季是浑浊汹涌的洪流。大量的冰川融水搅动着岩石和沉积物,几乎没有光线可以照射到河床,而其他季节的低温和积雪则几乎没有机会让丰富的微生物群生长。但是,随着冰川在全球变暖的影响下逐渐缩小,冰川的水量也在不断减少。这意味着溪流变得更加温暖、平静和清澈,使藻类和其他微生物有机会大量繁殖,并为当地的碳和营养循环做出更大贡献。洛桑联邦理工学院河流生态系统实验室(RIVER)的全职教授汤姆-巴廷(Tom Battin)说:"我们正在目睹这些生态系统中微生物组发生深刻变化的过程由于初级生产的增加,这简直就是一场'绿色转型'。"在论文中,科学家们研究了溪水中的氮和磷等营养物质,以及生活在河床沉积物中的微生物为利用这些营养物质而产生的酶。然后,他们观察了由大小不一的冰川提供水源的巨大梯度溪流中这两种营养物质的变化。"冰川哺育的溪流生态系统通常拥有有限的碳和营养物质,尤其是磷,"前 RIVER 博士后、本文第一作者泰勒-科勒(Tyler Kohler)解释说。"随着冰川的萎缩,藻类和其他微生物对磷的需求增加,高山溪流中磷的限制可能会越来越多"。因此,磷作为生命的重要组成部分,在下游生态系统(包括较大的河流和湖泊)中将变得更加稀缺,对其食物网的影响尚不可知。2023 年 8 月,"消失的冰川"项目的科学家在《皇家学会开放科学》上发表了一篇论文,支持上述发现。在这项研究中,作者分析了乌干达鲁文佐里山脉一条由冰川提供水源的小溪的微生物群。在这里,营养物质和酶的组成也大不相同,藻类非常丰富。巴廷说:"鲁文佐里冰川发生的变化让我们看到了瑞士冰川注入的溪流在30年或50年后的样子。这种变化的一个结果是,随着冰川注入的溪流接纳更多的微生物生命,它们将在二氧化碳通量等生物地球化学循环中发挥更大的作用。"RIVER 团队计划在此基础上继续开展研究。他们正在对冰川溪流中的微生物生物多样性进行普查,并利用各种基因组信息,探索多样化的微生物是如何在地球上最极端的淡水生态系统中生存的。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员发现珊瑚中抵御气候变化的微生物卫士

研究人员发现珊瑚中抵御气候变化的微生物卫士 他们发现,珊瑚微生物组(生活在珊瑚中的多种微生物)中某些原生生物的丰度可以让科学家了解珊瑚是否能在热应力下存活下来。这些发现对全球珊瑚具有重要意义,因为它们面临着更频繁的海洋变暖事件,尤其是那些没有动物贝壳的珊瑚。资料来源:迈阿密大学罗森斯蒂尔海洋、大气和地球科学学院该研究的资深作者哈维尔-德尔坎波(Javier del Campo),罗森斯蒂尔学院(Rosenstiel School)的兼职助理教授,也是西班牙国家研究委员会(CSIC)和庞培法布拉大学(UPF)联合中心IBE的首席研究员介绍说:"由于气候变化,珊瑚面临越来越多的热应激事件,更好地了解可能影响生存能力的所有微生物,可以为保护工作者提供信息,让他们知道应该优先对哪些珊瑚进行干预。"为了开展这项研究,国际研究小组从地中海各地收集了珊瑚样本,分析它们的微生物组,并进行了热应力实验。他们对两种 rRNA 进行了扩增和测序,以观察一种软珊瑚紫罗兰色海鞭(Paramuricea clavata),一种微生物群中的细菌和原生生物,然后在实验室中对它们进行自然热应力实验,以检测死亡迹象。紫罗兰色海鞭(Paramuricea clavata)是地中海温带珊瑚礁的重要组成部分,目前正受到与全球变暖有关的大规模死亡事件的威胁。图片来源:Parent GéryParamuricea clavata是地中海温带珊瑚礁的重要建筑师,目前正受到与全球变暖有关的大规模死亡事件的威胁。他们发现,一类名为"Syndiniales"的寄生性单细胞原生动物在热应力下存活的珊瑚中更为常见,而一类与导致人类疟疾的寄生虫密切相关的原生动物"Corallicolids"在热应力下死亡的珊瑚中更为常见。据研究人员称,原生生物或单细胞真核生物在大多数宿主生物中的研究少于细菌,但它们可能对珊瑚宿主的健康产生重大影响。德尔坎波说:"微生物组是珊瑚宿主健康的重要组成部分,我们应该研究其中从细菌到原生动物的所有成员。"这项研究最近发表在《环境微生物学》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人