开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员在30多亿年前的生态系统中发现了复杂的微生物群落

研究人员在30多亿年前的生态系统中发现了复杂的微生物群落 微生物被认为是地球上最早的生命形式,其证据蕴藏在 35 亿年前的岩石中。这些岩石中含有这些远古生物留下的地球化学和形态标记,如特定的化合物和结构。然而,生命起源于地球的时间和地点,以及这些早期微生物群落中物种多样性的形成时间,至今仍不清楚。证据很少,而且常常存在争议。 PC版: 手机版:

封面图片

《.微生物学 》

《.微生物学 》 简介:研究微小生物的学科,涵盖细菌、病毒、真菌等单细胞或多细胞生物的结构、功能及其生态作用。通过揭示微生物的代谢机制与遗传特性,推动医学(如抗生素与疫苗研发)、农业(生物肥料)及工业(发酵技术)等领域的创新应用。 亮点:在公共卫生(如病原体防控)、环境治理(污染物降解)和生物能源开发中发挥关键作用。分子生物学与基因组学技术加速了微生物资源的挖掘,其跨学科特性串联起化学、医学与环境科学的前沿研究。 标签:#微生物研究 #生命科学基础 #抗生素开发 #基因工程 #公共卫生 #环境治理 链接:https://pan.quark.cn/s/f91a0182d1eb

封面图片

珊瑚白化:表层下微生物混乱的催化剂

珊瑚白化:表层下微生物混乱的催化剂 2019 年白化事件期间,研究人员在法属波利尼西亚莫奥里亚的珊瑚礁上潜水。图片来源:Milou Arts of NIOZ由夏威夷大学马诺阿分校(UH)和荷兰皇家海洋研究所(NIOZ)领导的新研究发现,当珊瑚白化发生时,珊瑚会向周围的水中释放独特的有机化合物,这不仅会促进细菌的整体生长,而且会选择可能会进一步对珊瑚礁造成压力的机会性细菌。"我们的研究结果表明,短期热应力和长期白化的影响可能会超出珊瑚的范围,延伸到水体中,"共同第一作者、马诺阿大学热带农业与人力资源学院博士后研究员、马诺阿大学海洋与地球科学技术学院(SOEST)前博士生韦斯利-斯帕拉贡(Wesley Sparagon)说。研究小组成员包括来自马诺阿大学、国家海洋研究所、斯克里普斯海洋学研究所和加州大学圣巴巴拉分校的科学家,他们对2019年法属波利尼西亚穆雷阿岛白化事件期间收集的白化和未白化珊瑚进行了实验。这项研究的资深作者、SOEST 教授克雷格-尼尔森(Craig Nelson)说:"尽管珊瑚白化是一个有据可查的现象,而且在全球珊瑚礁中越来越普遍,但有关珊瑚礁水柱微生物学和生物地球化学影响的研究却相对较少。"作者 Irina Koester 博士(左)和 Jessica Bullington 博士(右)以及共同第一作者 Wesley Sparagon 博士(中)在莫奥里亚的甘普站使用蠕动泵对微生物群落进行采样。图片来源:克雷格-尼尔森,马诺阿大学/ SOEST实验结果和微生物反应在加热实验中,研究小组确定,与未漂白的珊瑚相比,受热胁迫的珊瑚和漂白的珊瑚在应对热胁迫时会散发出不同成分的有机物。这些独特的化合物为周围水域中的微生物群落提供了营养,使其数量增加。斯帕拉贡说:"有趣的是,对白化珊瑚渗出物做出反应的微生物与在健康珊瑚渗出物上生长的微生物截然不同。而且,快速生长的机会主义者和潜在病原体的丰度更高。这些微生物群落在受压珊瑚周围的生长可能会通过窒息或引入疾病对珊瑚造成伤害。"作者 Zach Quinlan 博士(左)和共同第一作者 Milou Arts(右)使用蠕动泵收集溶解有机碳样本。资料来源:Wesley Sparagon,马诺阿大学最令人惊讶的是,珊瑚释放化合物的这种变化发生在研究中经历过任何压力的珊瑚身上:已受热但尚未漂白的珊瑚、既受热又漂白的珊瑚以及之前在野外漂白过的珊瑚。NIOZ的共同第一作者米卢-阿茨(Milou Arts)说:"这表明,这一过程发生在珊瑚白化的整个过程中,从热应力开始一直到恢复。重要的是,它在热应力下的健康珊瑚中最为明显,这表明它在热应力开始时影响最大,可能会将珊瑚推向更严重的白化,最终导致死亡。"研究人员正在积极研究如何识别水体中的化合物和微生物,它们可以作为珊瑚礁受到压力时的预警系统。这可以加强或补充其他珊瑚礁保护工作,特别是在发生灾难性破坏之前识别珊瑚礁压力方面。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现度假者的日晒偏好会改变皮肤微生物群的组成和多样性

研究发现度假者的日晒偏好会改变皮肤微生物群的组成和多样性 研究表明,假日暴晒会迅速但暂时地影响皮肤微生物群,特别是变形菌,从而影响皮肤健康和恢复动态。研究人员发现,过多的阳光照射会对皮肤细菌的短期多样性和组成产生负面影响。长期暴露于紫外线与皮肤细胞中DNA的损伤、炎症和皮肤过早老化有关,但故意晒太阳的行为仍然很普遍。由于缺乏对个人行为如何影响紫外线相关微生物群变化以及这与皮肤健康之间关系的研究,英国的研究人员现在研究了寻求阳光的行为对度假者皮肤微生物群组成的影响。曼彻斯特大学首席研究员、发表在《老龄化前沿》(Frontiers in Aging)杂志上的这项研究的通讯作者阿比盖尔-兰顿(Abigail Langton)博士说:"我们在一组度假者身上发现,他们的日晒行为对皮肤微生物群的多样性和组成有很大影响。我们已经证明,晒黑皮肤与度假后立即降低变形杆菌丰度有关。然而,所有度假者的微生物群在他们停止长时间晒太阳几周后都得到了恢复"。晒太阳会伤害皮肤菌落在前往阳光明媚的目的地度假(至少持续七天)之前,研究人员对参与者的皮肤进行了分析。皮肤微生物群主要由表面的三种细菌群落组成:放线菌、变形菌和厚壁菌,在度假后的第 1 天、第 28 天和第 84 天,研究人员再次对参与者的皮肤微生物群进行了评估。此外,每位度假者还根据个人的晒黑反应被分配到一个小组。21 名参与者中有 8 人在度假期间晒黑了皮肤,他们被视为"寻求者"。晒黑"组由 7 人组成,他们在出发时已经晒黑,并在整个假期中保持晒黑。这两组人被归类为"寻求阳光者"。其余六名参与者被视为"避免晒太阳者";他们的肤色在度假前和度假后都是一样的。这项研究的第一作者、曼彻斯特大学研究员托马斯-威尔莫特(Thomas Willmott)博士解释说:"这项研究是在现实生活中的度假者身上进行的,它为我们提供了重要的见解,让我们了解日晒是如何导致晒黑反应的即使是在相对较短的日照时间内也会导致变形杆菌丰度的急剧下降,从而降低皮肤微生物群的多样性。"尽管变形菌迅速减少,皮肤微生物群的多样性也随之发生变化,但细菌群落结构在人们度假归来 28 天后已经恢复。威尔莫特继续说:"这表明,度假时暴露在紫外线下会对皮肤微生物群产生急性影响,但一旦回到阳光较弱的气候环境中,恢复速度相对较快。"微生物群紊乱可导致健康问题蛋白质细菌在皮肤微生物群中占主导地位。兰顿指出:"因此,微生物群迅速恢复以重建皮肤的最佳功能条件也就不足为奇了。更令人担忧的可能是微生物群多样性的快速改变,这与疾病状态有关。例如,皮肤细菌丰富度的降低以前与皮炎有关。特别是变形杆菌多样性的波动与湿疹和牛皮癣等皮肤问题有关。"研究人员指出,未来的研究应该探讨为什么蛋白细菌似乎对紫外线特别敏感,以及这种多样性的变化如何长期影响皮肤健康。理想的情况是,此类研究的目标是增加参与者的数量,以便进一步深入了解情况。编译自:ScitechDaily ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

封面图片

操纵代谢:寄生古微生物由内而外改造宿主

操纵代谢:寄生古微生物由内而外改造宿主 由丁苏、约书亚-哈姆、妮可-贝尔、雅普-达姆斯特和安雅-斯潘组成的研究小组在最近的《自然-通讯》上发表了这些研究成果。古细菌是一类独特的单细胞生物,与细菌一样,细胞内没有带有DNA 的细胞核或其他细胞器。这项研究的重点是 DPANN 古细菌,其特点是细胞微小,遗传物质有限。这些古菌依赖其他微生物生存,附着在它们身上并提取脂质来构建自己的细胞膜。电子显微镜下显示寄生的 Ca.Nha.antarcticus:小圆形,附着在宿主 Hrr.图片来源:Joshua N Hamm以前人们认为这些寄生古细菌会不加区分地消耗宿主的任何脂质来制造自己的膜,与此相反,Ding 和 Hamm 的最新研究结果表明,这些寄生古细菌的行为更具选择性。具体地说,寄生古细菌南极纳米古细菌(Candidatus Nanohaloarchaeum antarcticus)只选择性地吸收宿主Halorubrum lacusprofundi 的某些脂质。哈姆总结道:"换句话说:换句话说:Ca.N. antarcticus很挑食。"古菌、细菌和高等生物古细菌是一种单细胞生物,长期以来一直被认为是细菌的一个特殊类群。与细菌相似,它们的细胞内没有含有 DNA 的细胞核或其他细胞器。然而,从 20 世纪 70 年代起,微生物学家不再认为古细菌是细菌,而是将它们归类为所有生命形式中的一个独立领域。因此,现在我们有古细菌、细菌和真核生物,后者包括所有动物和植物,它们的细胞中都有带有遗传物质的细胞核。通过分析有寄生虫和没有寄生虫的宿主的脂质,丁和哈姆能够证明宿主通过改变它们的膜来适应寄生虫的存在。这包括改变所使用的脂质的类型和数量,以及改变脂质的行为,从而提高新陈代谢和膜的弹性,使寄生虫更难穿透。他解释说:"如果宿主的膜发生变化,就会影响宿主对环境变化(如温度或酸度)的反应。另一个寄生于寄主 Hrr.Nha. antarcticus 寄生在宿主 Hrr.图片来源:Joshua N Hamm这项研究的另一个突破性进展是由苏鼎在国家创新研究院(NIOZ)开发了一种新的分析技术。在此之前,脂质分析需要事先了解目标脂质基团。新技术可以同时检测所有脂质,包括未知类型的脂质,从而有助于发现脂质成分的变化。如果使用传统方法可能无法看到脂质的变化,但新方法使其变得简单明了。这些发现为微生物的相互作用和生态学提供了深刻的见解。哈姆说:"它不仅首次揭示了不同古细菌之间的相互作用,还对微生物生态学的基本原理提出了全新的见解。他强调了未来研究的重要性,以确定在不断变化的环境条件下,这些相互作用会如何影响微生物群落的稳定性。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人