不是科幻小说:哈佛科学家们开发出了一种可编程响应的元流体

不是科幻小说:哈佛科学家们开发出了一种可编程响应的元流体 这种元流体可用于各种领域,从用于机器人编程的液压致动器,到可根据撞击强度消散能量的智能减震器,再到可从透明过渡到不透明的光学设备。这项研究发表在《自然》杂志上。SEAS材料科学与机械工程副研究员、论文第一作者Adel Djellouli说:"我们对这种新型流体的可能性还只是肤浅的了解。有了这个平台,你可以在许多不同的领域做许多不同的事情。"超流体与固体超材料超材料其特性由结构而非成分决定的人造材料多年来已被广泛应用于各种领域。但是,大多数材料如东南欧科学院应用物理学罗伯特-L-华莱士教授兼电气工程文顿-海斯高级研究员费德里科-卡帕索实验室首创的金属透镜都是固体。元流体下方显示哈佛标志的可调谐光学元件。资料来源:哈佛大学科学与工程学院"与固体超材料不同,超流体具有独特的流动能力,能够适应其容器的形状,"SEAS应用力学威廉和阿米-宽-达诺夫(William and Ami Kuan Danoff)教授、论文资深作者卡蒂娅-贝尔托迪(Katia Bertoldi)说。"我们的目标是创造出一种元流体,它不仅拥有这些非凡的特性,还能为可编程粘度、可压缩性和光学特性提供一个平台。"研究小组利用 SEAS 的马林克罗特物理学和应用物理学教授 David A. Weitz 实验室开发的一种高度可扩展的制造技术,制造出了数十万个这种充满空气的高变形球形胶囊,并将它们悬浮在硅油中。当液体内部的压力增大时,胶囊就会塌陷,形成一个透镜状的半球。当压力消失时,胶囊又会弹回球形。元流体的特性和应用这种转变会改变液体的许多特性,包括粘度和不透明度。这些特性可以通过改变液体中胶囊的数量、厚度和大小来调整。研究人员通过将元流体装入液压机器人抓手,让抓手抓起一个玻璃瓶、一个鸡蛋和一颗蓝莓,展示了液体的可编程性。在由简单空气或水驱动的传统液压系统中,机器人需要某种传感或外部控制才能调整抓取力,在不压碎所有三个物体的情况下将其抓起。但有了元流体,就不需要传感了。液体本身会对不同的压力做出反应,改变其顺应性,从而调整抓手的力度,使其能够抓起沉重的瓶子、精致的鸡蛋和小蓝莓,而且无需额外编程。Djellouli说:"我们的研究表明,我们可以利用这种流体为一个简单的机器人赋予智能。"研究小组还展示了一种流体逻辑门,通过改变元流体就能重新编程。光学特性和流体状态当压力发生变化时,元流体的光学特性也会发生变化。当胶囊呈圆形时,它们会散射光线,使液体变得不透明,就像气泡使充气的水呈现白色一样。但当施加压力,胶囊塌陷时,它们就会像微透镜一样聚焦光线,使液体变得透明。这些光学特性可用于一系列应用,例如根据压力改变颜色的电子墨水。研究人员还发现,当胶囊呈球形时,元流体的表现就像牛顿流体,这意味着它的粘度只会随着温度的变化而变化。然而,当胶囊塌陷时,悬浮液就会转变为非牛顿流体,这意味着它的粘度会随着剪切力的变化而变化剪切力越大,流动性越强。这是第一种能在牛顿和非牛顿状态之间转换的元流体。接下来,研究人员将探索元流体的声学和热力学特性。Bertoldi 说:"这些可扩展、易生产的元流体应用空间巨大。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家利用激光技术揭示了量子材料隐藏的特性

科学家利用激光技术揭示了量子材料隐藏的特性 加州大学圣迭戈分校的研究人员利用一种先进的光学技术进一步了解了一种名为Ta2NiSe5(TNS)的量子材料。他们的研究成果发表在《自然-材料》(Nature Materials)杂志上。材料可以通过不同的外部刺激受到扰动,通常是温度或压力的变化;然而,由于光是宇宙中速度最快的东西,材料对光刺激的反应非常快,从而揭示出原本隐藏的特性。通过改进技术,研究小组获得了更广泛的频率范围,从而揭示了 TNS 激子凝聚态的一些隐藏特性。资料来源:Sheikh Rubaiat Ul Haque / 斯坦福大学量子材料中的先进光学技术"从本质上讲,我们用激光照射一种材料,这就像定格摄影,我们可以逐步跟踪该材料的某种特性,"领导这项研究的物理学教授理查德-阿维特说,他也是论文的作者之一。"通过观察组成粒子如何在该系统中移动,我们可以找出这些以其他方式很难发现的特性。"该实验由第一作者谢赫-鲁巴亚特-乌尔-哈克(Sheikh Rubaiat Ul Haque)完成,他于2023年从加州大学圣地亚哥分校毕业,现在是斯坦福大学的一名博士后学者。他与阿弗里特实验室的另一名研究生张远一起改进了一种名为太赫兹时域光谱学的技术。这项技术允许科学家在一定频率范围内测量材料的特性,而哈克的改进使他们能够获得更广泛的频率范围。量子态和光放大这项工作基于论文的另一位作者、苏黎世联邦理工学院教授尤金-德姆勒(Eugene Demler)提出的理论。Demler 和他的研究生马里奥斯-迈克尔(Marios Michael)提出了这样一个观点:当某些量子材料被光激发时,它们可能会变成一种能放大太赫兹频率光的介质。这促使哈克及其同事仔细研究 TNS 的光学特性。当电子被光子激发到更高的层次时,会留下一个空穴。如果电子和空穴结合在一起,就会产生激子。激子还可能形成凝聚态当粒子聚集在一起并表现为单一实体时会出现的一种状态。在 Demler 理论的支持下,利用马克斯-普朗克物质结构与动力学研究所 Angel Rubio 小组的密度泛函计算,研究小组得以观测到反常的太赫兹光放大现象,从而揭示了 TNS 激子凝聚态的一些隐藏特性。凝缩物是一种定义明确的量子态,使用这种光谱技术可以将它们的某些量子特性印刻到光上。这可能会对利用量子材料的纠缠光源(多个光源具有相互关联的特性)这一新兴领域产生影响。哈克说:"我认为这是一个广阔的领域。Demler的理论可以应用于一系列具有非线性光学特性的其他材料。有了这项技术,我们就能发现以前从未探索过的新的光诱导现象。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家用合成生物学和三维打印技术打造可编程的生命材料

科学家用合成生物学和三维打印技术打造可编程的生命材料 从第 1 天(左)到第 14 天(右),3D 打印在水凝胶中的植物细胞生长并开始繁茂成黄色的细胞簇。图片来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338最近,研究人员一直在开发工程活体材料,主要依靠细菌和真菌细胞作为活体成分。然而,植物细胞的独特特性激起了将其用于工程植物活体材料(EPLMs)的热情。以前,科学家们创造的基于植物细胞的材料结构相当简单,功能有限。余子怡、狄振高及其同事希望改变这种状况,他们制作了形状复杂的 EPLM,其中含有可定制行为和功能的基因工程植物细胞。24 天后,植物细胞在两种不同的生物墨水中产生的颜色在这种叶形工程活体材料中清晰可见。来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338研究人员将烟草植物细胞与含有农杆菌的明胶和水凝胶微粒混合,农杆菌是一种常用于将DNA片段转入植物基因组的细菌。然后将这种生物墨水混合物在平板上或装有另一种凝胶的容器内进行 3D 打印,形成网格、雪花、树叶和螺旋等形状。接着,用蓝光固化打印材料中的水凝胶,使结构硬化。在随后的 48 小时内,EPLMs 中的细菌将 DNA 转移到生长中的烟草细胞上。然后他们用抗生素清洗这些材料,以杀死细菌。在接下来的几周里,随着植物细胞在 EPLMs 中生长和复制,它们开始根据转移的 DNA 生成蛋白质。在这项概念验证研究中,转移的DNA使烟草植物细胞能够产生绿色荧光蛋白或贝特类色素红色或黄色的植物色素,可作为天然着色剂和膳食补充剂。通过用两种不同的生物墨水打印叶形 EPLM一种墨水沿叶脉产生红色素,另一种墨水在叶片的其他部分产生黄色素研究人员表明,他们的技术可以产生复杂的、空间可控的多功能结构。研究人员说,这种 EPLM 结合了生物体的特征和非生物物质的稳定性和耐久性,可以用作细胞工厂,生产植物代谢物或药物蛋白质,甚至用于可持续建筑应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家成功解码“材料基因组”

科学家成功解码“材料基因组” 来自原子探针的模拟二维原子图像。图片来源:悉尼大学这一突破对于开发创新材料至关重要,将推动人们开发用于航空航天业的更坚固且更轻的合金、用于电子设备的新一代半导体以及用于电动机的改进磁铁。该研究利用原子探针断层扫描(APT)技术来解开短程阶(SRO)的复杂性。SRO工艺是了解局部原子环境的关键。SRO经常被比作“材料基因组”,即晶体内原子的排列或构型。其重要性在于不同的局部原子排列会影响材料的电子、磁性、力学、光学和其他特性,这些特性对之后产品的安全性和功能性有极大影响。此次研究的重点是钴-铬-镍高熵合金,这类合金在高级工程应用中非常有前途。团队利用复杂的APT成像数据,并结合先进的数据科学技术,实现了以3D形式可视化原子,从而观察和测量SRO,并比较在不同加工条件下合金的变化。该研究为SRO如何控制关键材料特性研究提供了模板,也为科学家提供了一双新“眼睛”,从而可以看到原子级架构的微小变化,是如何导致材料性能的巨大飞跃的。至关重要的是,SRO提供了详细的原子级蓝图,增强了人们对材料行为的计算模拟、建模和最终预测的能力。 ... PC版: 手机版:

封面图片

科学家研制出一种具有独特甚至矛盾特性的新型玻璃

科学家研制出一种具有独特甚至矛盾特性的新型玻璃 使用标准实验室设备在室温下轻松制备多肽玻璃。资料来源:特拉维夫大学特拉维夫大学(TAU)的研究人员创造了一种新型玻璃,这种玻璃具有独特甚至相互矛盾的特性,如具有很强的粘合性(粘性),同时又具有令人难以置信的透明性。这种玻璃在室温下与水接触后会自发形成,可为光学和电子光学、卫星通信、遥感和生物医学等一系列不同行业带来一场革命。这种玻璃是由以色列和世界各国的研究人员组成的研究小组发现的,研究小组由博士生 Gal Finkelstein-Zuta 和来自塔大生命科学院 Shmunis 生物医学与癌症研究学院和工程学院材料科学与工程系的 Ehud Gazit 教授领导。研究成果最近发表在著名的科学杂志《自然》上。制备后的固体肽玻璃。资料来源:特拉维夫大学"在我们的实验室,我们研究生物融合,特别是利用生物的奇妙特性来生产创新材料,"Gazit 教授解释说。"除其他外,我们还研究构成蛋白质的氨基酸序列。氨基酸和肽具有相互连接并形成具有确定周期性排列的有序结构的自然趋势,但在研究过程中,我们发现了一种独特的肽,它的行为与我们所知道的任何东西都不同:它没有形成任何有序的模式,而是一种无定形、无序的模式,就像玻璃一样。"在分子水平上,玻璃是一种液态物质,其分子结构缺乏有序性,但其机械特性却类似于固态。玻璃通常是通过快速冷却熔融材料并将其"冻结"在这种状态下,然后再让其结晶,从而形成一种无定形状态,具有独特的光学、化学和机械特性,以及耐久性、多功能性和可持续性。TAU 的研究人员发现,在室温条件下,由三个酪氨酸序列(YYY)组成的芳香肽在水溶液蒸发后会自发形成分子玻璃。(从左至右):Gal Finkelstein-Zuta 和 Ehud Gazit 教授。图片来源:特拉维夫大学Gal Finkelstein-Zuta 说:"我们所熟知的商用玻璃是通过快速冷却熔融材料制成的,这一过程被称为玻璃化。无定形的液态组织必须先固定下来,然后才能像晶体那样以更节能的方式排列,而这就需要能量必须将其加热到高温并立即冷却。另一方面,我们发现的玻璃是由生物构件组成的,它在室温下自发形成,不需要高温或高压等能量。只需将粉末溶解在水中就像制作酷儿汽水一样,玻璃就会形成。例如,我们用新玻璃制作镜片。我们不需要经过漫长的研磨和抛光过程,只需将一滴水滴在表面上,仅通过调节溶液量就能控制其曲率,进而控制其焦距。"TAU 的创新玻璃具有世界上独一无二的特性,这些特性甚至相互矛盾:它非常坚硬,但在室温下可以自我修复;它是一种强力粘合剂,同时在从可见光到中红外线的宽光谱范围内都是透明的。"这是第一次有人成功地在简单条件下制造出分子玻璃,"Gazit 教授说,"但比这更重要的是我们制造出的玻璃的特性。这是一种非常特殊的玻璃。一方面,它非常坚固,另一方面,它非常透明,比普通玻璃透明得多。我们都知道,普通的硅酸盐玻璃在可见光范围内是透明的,而我们创造的分子玻璃在红外线范围内是透明的。这在卫星、遥感、通信和光学等领域有很多用途。它还是一种强力粘合剂,可以把不同的玻璃粘在一起,同时还能修复玻璃上形成的裂缝。这是世界上任何玻璃都不具备的一系列特性,在科学和工程领域具有巨大的潜力,而我们从一个肽一小块蛋白质中获得了这一切。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

中国科学家研发出弹性铁电材料

中国科学家研发出弹性铁电材料 据中国科学院宁波材料技术与工程研究所网站介绍,该研究所的研究团队研发出了兼具弹性回复与铁电性的新型高分子铁电材料,有效解决了传统铁电材料在可穿戴领域难以在大形变下保持稳定性能的难题。该成果于8月4日在国际顶尖学术期刊《科学》上发表。 铁电材料是一种神奇的绝缘性功能材料,有记忆能力,可用在计算机存储器、高精度电机、超敏感传感器和声纳设备等电子产品中,也是日常使用的手机、平板电脑等电子设备中必不可少的材料之一。 用该材料做成的传感器将更随和,具有更高测量精度、更好的穿戴舒适性,未来或能实现手机柔软贴身,可任意弯折。这种材料的拉伸率高达125%,不但能保持原有的铁电性,还能在外力撤除后迅速恢复原状。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

科学家开发出能产生34倍于自身重量力量的人造肌肉装置

科学家开发出能产生34倍于自身重量力量的人造肌肉装置 研究人员利用离子聚合物人造肌肉开发出了一种软流体开关,它能以超低功率运行,产生的力是其重量的 34 倍。这一突破通过精确控制狭窄空间中的流体流动,为软机器人、生物医学设备和微流体技术提供了潜在应用。上图描述了在超低电压下使用软流体开关分离液滴的过程。资料来源:KAIST 软机器人与智能材料实验室韩国科学技术院(KAIST)(院长 Kwang-Hyung Lee)1 月 4 日宣布,机械工程系 IlKwon Oh 教授领导的一个研究小组开发出了一种软流体开关,它能在超低电压下工作,并能在狭窄空间内使用。现代科技中的人造肌肉人造肌肉模仿人类肌肉,与传统电机相比能提供灵活自然的运动,是软体机器人、医疗设备和可穿戴设备的基本元素之一。这些人造肌肉会根据电、气压和温度变化等外部刺激产生运动,要利用人造肌肉,必须对这些运动进行精确控制。基于现有电机的开关因其刚性和体积大而难以在有限的空间内使用。为了解决这些问题,研究团队开发了一种电离子软致动器,即使在狭窄的管道中也能控制流体流动,同时产生较大的力,并将其用作软流体开关。合成 pS-COF 并将其用作电活性软流体开关的普通电极-电解质宿主。A) pS-COF 的合成示意图。B) 电化学软开关的工作原理示意图。C) 使用基于 pS-COF 的电化学软开关在动态操作中控制流体流动的原理图。资料来源:KAIST 软机器人与智能材料实验室。研究小组开发的离子聚合物人工肌肉由金属电极和离子聚合物组成,在通电后会产生力和运动。人工肌肉电极表面由有机分子组合而成的多磺化共价有机框架(pS-COF)被用来以超低功率(~0.01V)产生相对于其重量的巨大力量。结果制造出的厚度为 180 微米、细如发丝的人造肌肉在启动平滑运动时产生的力比其 10 毫克的轻重量大 34 倍多。因此,研究小组能够以较低的功率精确控制流体的流动方向。领导这项研究的IlKwon Oh教授说:"以超低功率运行的电化学软流体开关可以为基于流体控制的软机器人、软电子学和微流体学领域带来许多可能性。从智能纤维到生物医学设备,这项技术有可能立即在各种工业环境中投入使用,因为它可以轻松应用于我们日常生活中的超小型电子系统。" ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人