研究发现不用煤焦油和原油也能制造常见感冒止痛药

研究发现不用煤焦油和原油也能制造常见感冒止痛药 扑热息痛最早合成于 19 世纪,在美国和日本被称为对乙酰氨基酚,是世界上最常用的止痛退烧非处方药之一。它以泰诺和必理痛的名义出售,甚至被列入世界卫生组织的《基本药物示范目录》。扑热息痛的坏处在于,与大多数药品一样,它来自不可再生的石油化工产品。事实上,扑热息痛曾被称为"煤焦油镇痛药",因为商业化生产扑热息痛的起始原料是苯酚,而苯酚是从具有镇痛特性的煤焦油蒸馏中提取的。如今,工业苯酚通常从原油而非煤焦油中合成,但这仍然会带来环境问题。鉴于地球上有限的化石燃料供应和实现净零排放的全球挑战,威斯康星大学麦迪逊分校的研究人员设计出了一种生产扑热息痛的更环保方法:树木。2019 年,由华大麦迪逊分校生物化学教授约翰-拉尔夫(John Ralph)和五大湖生物能源研究中心(Great Lakes Bioenergy Research Center)的科学家史蒂文-卡伦(Steven Karlen)领导的团队获得了一项专利,他们的方法是从木质素(一类复杂的有机聚合物,是某些植物的"骨架")中合成扑热息痛。从那时起,他们不断改进这一工艺。杨树的木质素被分解并转化为扑热息痛首先是一些化学知识。对乙酰氨基酚分子(N-乙酰氧基对氨基苯酚)由一个六碳苯环和两个化学基团(一个羟基和一个酰胺基)组成。杨树中的木质素会产生一种类似的化合物,即对羟基苯甲酸酯(pHB)。然而,由于木质素的分子结构复杂且不规则,要将其分解成有用的成分非常困难。面对挑战,研究人员开发出一种方法,将 pHB 分解成另一种化学物质,然后将其转化为扑热息痛(或其他用途的产品)。卡伦说:"这可以制造黑色墨水等染料,也可以制造可用于纺织品或材料应用的聚合物,还可以将其转化为粘合剂或类似的东西。它有着巨大的市场和价值。"这里有更多的化学知识,这种方法有三个加工阶段。第一阶段,植物性pHB被分解为对羟基苯甲酰胺(pHBA)。在第二阶段,连续反应过程将pHBA转化为对氨基苯酚,并回收未反应的pHBA。(在连续反应过程中,所有化学反应都是同时进行的,处理过的材料不会像分批反应那样被分成不同的部分)。第三阶段是将对氨基苯酚乙酰化为扑热息痛。研究人员发现,这种工艺的pHBA 对扑热息痛的产率约为 90%,扑热息痛的纯度超过 95%。卡伦说,通过进一步研究,应该可以将产量提高到 99%。与传统方法相比,新方法有几个优点。它成本更低、主要以水为基础、使用绿色溶剂,而且是连续反应而非批量反应,因此非常适合工业应用。卡伦说:"我们进行了研发,以扩大其规模并使其成为现实。当我砍树时,它可以直接进入反应器,提取苯甲酰胺。所以可以永远不停下来。只要卡车能快速驶入并装满料斗,就能持续生产药品。"2022 年,pHBA的全球市场约为 42500 吨,价值 6600-8500 万美元。根据研究人员的计算,需要 10 家生物精炼厂每天加工 1000 吨pHBA含量为 1.2 wt% 的杨木,才能满足这一需求。他们建议,建立一个由小型生物精炼厂组成的网络,为大型枢纽精炼厂提供原料,以提高产品转化率,这将是一个可行的选择,并可将产品市场规模从大约 8500 万美元扩大到 15 亿美元。他们还说,该工艺可生产的其他有价值产品也具有增值潜力。该研究发表在《ChemSusChem》杂志上。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法 北海道大学的研究人员开发出了一种开创性的方法,通过利用塑料废弃物引发自由基链式反应来解毒有害化学物质,从而实现塑料废弃物的再利用。这种方法既提高了安全性和效率,又解决了塑料垃圾的环境问题,为可持续发展和具有经济吸引力的化学工艺铺平了道路。艺术想象图描绘了从塑料纤维中产生的被称为自由基的极高活性分子。图片来源:Koji Kubota 和 Hajime Ito北海道大学化学反应设计与发现研究所(WPI-ICReDD)的研究人员领导的研究小组开发出一种方法,利用普通塑料材料而不是潜在的爆炸性化合物来引发自由基链式反应。这种方法大大提高了过程的安全性,同时还提供了一种重新利用聚乙烯和聚醋酸乙烯等普通塑料的方法。这些研究成果已发表在《美国化学学会杂志》上。(上图)利用机械力引发自由基链式反应的一般方案。(下图)利用杂货袋碎片在球磨罐中引发反应。资料来源:Koji Kubota 等人,《美国化学学会杂志》。2023 年 12 月 22 日研究人员利用球磨机(一种在钢罐中快速摇动钢球以混合固体化学物质的机器)进行研究。当钢球撞击塑料时,机械力会打破化学键,形成自由基,自由基具有高活性的非键电子。这些自由基促进了自我维持的链式反应,从而促进了有机卤化物的脱卤反应,即用氢原子取代卤原子。"使用商品塑料作为化学试剂是有机合成的一个全新视角,"Koji Kubota 副教授说。"我相信,这种方法不仅能开发出安全、高效的基于自由基的反应,还能为利用废塑料这一严重的社会问题提供新的途径"。北海道大学化学反应设计与发现研究所(WPI-ICReDD)研究团队的 Koji Kubota 副教授(左)和 Hajime Ito 教授(右)。资料来源:WPI-ICReDD在球磨罐中加入普通杂货袋的塑料碎片并成功进行反应,证明了废塑料的再利用。研究小组还展示了他们的方法可用于处理工业中广泛使用的剧毒多卤化合物。他们利用聚乙烯引发自由基反应,从一种常用于阻燃剂的化合物中去除多个卤原子,从而降低了其毒性。研究人员预计,由于这种方法在成本和安全性方面的优势,它将赢得业界的关注。Hajime Ito 教授评论说:"我们的新方法使用稳定、廉价和丰富的塑料材料作为自由基链式反应的引发剂,在促进开发具有工业吸引力、安全和高效的化学工艺方面具有巨大潜力。"这项研究得到了日本学术振兴会、日本科学技术振兴机构和日本文部科学省的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

太阳能新技术利用粪便制造氢燃料 转化率高达35%

太阳能新技术利用粪便制造氢燃料 转化率高达35% 氢基燃料是最有前途的清洁能源之一。但生产纯氢气是一个能源密集型过程,通常需要煤或天然气以及大量电力。在《细胞报告物理科学》(Cell ReportsPhysical Science)杂志的一篇论文中,由 UIC 工程师 Meenesh Singh 领导的一个多机构团队揭示了绿色制氢的新工艺。这种方法利用一种名为生物炭的富碳物质来减少将水转化为氢气所需的电量。通过使用太阳能或风能等可再生能源,并将副产品用于其他用途,该工艺可将温室气体排放量降至净零。化学工程系副教授辛格说:"我们是第一个证明可以利用生物物质在几分之一伏特的条件下生产氢气的小组。这是一项变革性技术。"用于制造清洁氢气的生物炭。资料来源:enny Fontaine/ UIC电解是将水分离成氢和氧的过程,需要电流。在工业规模上,通常需要化石燃料来产生这种电力。最近,科学家们通过在反应中引入碳源,降低了水分裂所需的电压。但这一过程也要使用煤或昂贵的化学品,并释放出二氧化碳作为副产品。辛格及其同事对这一工艺进行了改进,改用普通废品中的生物质。通过将硫酸与农业废弃物、动物粪便或污水混合,他们制造出一种名为生物炭的泥浆状物质,这种物质富含碳。研究小组试验了由甘蔗皮、大麻废料、废纸和牛粪制成的不同种类的生物炭。加入电解室后,所有五种生物炭都降低了将水转化为氢气所需的功率。其中表现最好的是牛粪,可将所需电力降低六倍,约为五分之一伏特。伊利诺伊大学芝加哥分校副教授 Meenesh Singh(右)和博士后研究员 Rohit Chauhan 在 Singh 的实验室工作。图片来源:Jenny Fontaine/ UIC由于对能量的要求很低,研究人员可以用一个标准硅太阳能电池在 0.5 伏电压下产生大约 15 毫安的电流为反应提供能量。这还不及一节 AA 电池产生的电量。辛格实验室的合著者和博士后学者罗希特-乔汉(Rohit Chauhan)说:"它的效率非常高,生物炭和太阳能几乎有 35% 转化为氢气。这些数字创下了世界纪录;这是任何人展示过的最高数字。"要使这一过程实现净零排放,就必须捕获反应产生的二氧化碳。但辛格说,这也会带来环境和经济效益,比如生产纯二氧化碳来碳酸饮料,或将其转化为乙烯和塑料制造中使用的其他化学品。"它不仅实现了生物废料利用的多样化,还能清洁生产氢气以外的不同化学物质,"论文共同第一作者、美国加州大学伯克利分校(UIC)毕业生尼希坦-卡尼(Nishithan Kani)说。"这种廉价的制氢方式可以让农民自给自足地满足他们的能源需求,或者创造新的收入来源"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

木质素研究的突破有望催生出具有成本竞争力的碳中性喷气燃料

木质素研究的突破有望催生出具有成本竞争力的碳中性喷气燃料 SAF 并不是一种完美的绿色航空解决方案事实上,目前还不存在完美的解决方案。使用 SAF 代替喷气燃料仍然会产生二氧化碳,但它是一种纯度更高的燃料,在燃烧更清洁、硫和微粒排放大幅减少的同时,还能多产生 3% 的能量。它消除了石油开采和提炼过程中的全部排放成本,根据所使用的原料,甚至可以实现净碳负排放所有这一切都无需改装喷气发动机。它与生物燃料不同,第二代 SAF 不使用玉米、甘蔗、大豆或其他粮食作物。这是对土地和水资源令人发指的浪费。取而代之的是使用磨粉作业产生的木材残渣、甘蔗渣、玉米秸秆等原料,以及其他廉价、丰富的废料产品。加州大学河滨分校的研究人员认为,问题出在木质素上,这是植物细胞中的一种关键结构成分。木质素坚韧而富有弹性,赋予了树木力量,同时也使得从生物质中提取碳作为燃料变得困难,尤其是在处理较硬的木材时。事实上,许多企业选择直接燃烧木质素来获取热能和电能,这种工艺虽然具有经济意义,但从环保角度看却绝对不可取。研究副教授Charles Kai与新安装的 20 加仑 CELF 反应器合影,该反应器将用于推广 CELF 生物精炼技术项目。然而,加州大学河滨分校的研究小组开发出一种预处理方法,大大改变了这一等式。在生物质预处理过程中将四氢呋喃(THF)加入水和稀酸中,研究小组发现可以显著提高整体效率,同时利用生物质中的木质素和糖生成燃料。其结果是:废弃生物质能带来更多的航空效益。使用玉米秸秆可增加 18% 的燃料,使用 THF 预处理后,每吨干原料的汽油当量从 44 加仑(167 升)增加到 51.8 加仑(196 升)。至于木质素含量较高的韧性杨木,每吨干原料的汽油当量产量高达 75.9 加仑(287 升),几乎是传统工艺从玉米秸秆中榨取的汽油当量的两倍。最重要的是,THF 预处理化学品成本低廉,而且特别容易获得,因为它可以用 SAF 工厂已经在加工的生物质糖来制造。GlobalAir在撰写本报告时引用的美国 Jet-A 的平均价格为每加仑 6.45 美元,SAF 的平均价格为每加仑 9.28 美元。根据加州大学河滨分校团队的计算,其 CELF(共溶剂增强木质纤维素分馏)生产工艺的生产成本可低至每加仑 3.15 美元。这是否意味着 80% 的清洁喷气燃料只需普通喷气燃料一半的价格?不;生产成本并没有考虑运输、物流、商业成本或利润,化石燃料的价格仍然受益于巨大的规模经济。早在 2021 年 11 月,国际能源署(IEA)就将每加仑化石燃料的生产成本估算为 1.14 美元至 3.03 美元,而根据Index Mundi 的数据,当时这种极不稳定的商品的售价为每加仑 2.19 美元。更不用说,还有各种生物燃料额度之类的因素要考虑,所以很难确定最终对价格的影响。但是,如果它真的如其所言,这一开发显然能更好地利用废木材,并应大幅降低 SAF 的价格。由于价格是采用这种技术的主要障碍,因此这将是可持续交通领域的一次巨大飞跃。"十多年前,我就开始了这项工作,因为我想产生影响,"里弗赛德团队负责人、副研究员查尔斯-凯(Charles Kai)在一份新闻稿中说。"我想找到化石燃料的可行替代品,我和我的同事们已经做到了。利用 CELF,我们已经证明有可能从生物质和木质素中制造出具有成本效益的燃料,并帮助遏制我们向大气中的碳排放。木质素利用是以最经济、最环保的方式从生物质中提取所需物质的关键。设计一种能够更好地利用生物物质中的木质素和糖的工艺,是这一领域最令人兴奋的技术挑战之一。"该团队的研究论文在《能源与环境科学》杂志上公开发表。 ... PC版: 手机版:

封面图片

中国科学家制造出阻燃、抑烟和超疏水透明竹材

中国科学家制造出阻燃、抑烟和超疏水透明竹材 科学家用化学方法去除木纤维中的木质素,然后用有机玻璃或环氧树脂处理剩余材料。最终得到的材料是透明的、可再生的、与玻璃一样结实或比玻璃更结实,同时重量更轻、隔热性更好。不过,使用木材还是有一些问题。木材比玻璃更易燃,而且需求量大,需要很长时间才能补充库存。因此,在这项新研究中,中国中南林业科技大学(CSUFT)的研究人员转而使用竹子。竹子通常被称为'第二森林',它的生长和再生速度极快,可以在四到七年的生长期内成熟并用作建筑材料,"该研究的通讯作者万才超说。"竹子的亩产量是木材的四倍,其卓越的效率是公认的"。竹子的内部结构和化学成分与木材非常相似,因此研究小组采用了相同的方法将其变成透明的。去除木质素后,竹子被注入一种无机液体硅酸钠,改变纤维对光线的折射,使其变得透明。然后,再进行处理,使材料具有疏水性或拒水性。最终的材料形成三层结构顶部是硅烷,中间是二氧化硅,底部是硅酸钠,这种竹材是透明的,透光率高达 71.6%,具有阻燃、防水、阻挡烟雾和一氧化碳的功能。在力学方面,它的弯曲模量为 7.6 GPa,拉伸模量为 6.7 GPa。它不仅可以用作建筑材料,而且在用作过氧化物太阳能电池的基板时,它就像一个光管理层。这使电池的功率转换效率提高了 15.29%。在未来的研究中,研究人员将重点关注这种透明竹子的大规模制造和多功能化。这项研究发表在《研究》杂志上。 ... PC版: 手机版:

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到 180.9 mmol gcat-1 h-1,选择性达到 96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+ light = 2CO + 2H2)的应用。该研究提出,用 O 部分取代 InGaN 中的 N 可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性 InGaN 纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究表明减少常见化学品的接触可延缓衰老

新研究表明减少常见化学品的接触可延缓衰老 醛类物质会损害人的健康。然而,研究小组的发现表明,这些有害影响还包括衰老。这一发现的研究小组成员包括名古屋大学的冈康义、中泽由佳、岛田真由子和荻友。"DNA损伤与衰老表型有关,"冈康义说。"然而,我们首次提出了醛源性DNA损伤与早衰之间的关系。"研究人员假设,醛与衰老之间可能存在联系,因为早衰症患者(如 AMeD 综合征)体内分解醛的酶活性不足,如 ALDH2。对于健康人来说,ALDH2 对酒精的反应也很重要。当人饮用葡萄酒或啤酒时,肝脏会将酒精代谢成醛,以便将其排出体外。ALDH2 的活性对于将醛转化为无毒物质非常重要。接触甲醛后,组蛋白与 DNA(组蛋白-DPC)发生交联,导致转录等细胞过程功能失常。资料来源:Reiko Matsushita醛是有害的,因为它们与 DNA 和蛋白质高度反应。在人体内,它们会形成 DNA 蛋白交联(DPC),阻断典型的细胞增殖和维持过程中的重要酶,导致这些过程失灵和患者衰老。科学家们重点研究了由醛引起的DPC,并使用一种名为DPC-seq的方法来研究早衰症患者体内醛积累与DNA损伤之间的联系。在一系列实验中,研究人员发现,TCR 复合物、VCP/p97 和蛋白酶体参与了清除活跃转录区中由甲醛诱导的 DPC。这一点在一个同时缺乏甲醛清除过程和TCR途径的小鼠模型中得到了证实,该模型显示出更严重的AMeD综合征症状。这些过程非常重要,因为它们与醛的清除有关。这表明,早衰疾病与醛积累之间存在关联。冈康义教授对他们的研究成果的意义充满希望,通过阐明 DNA 损伤快速愈合的机制,有助于揭示了遗传早衰的部分原因。"我们的研究为了解早衰疾病的潜在机制开辟了新途径,并为治疗干预提供了潜在靶点,通过阐明醛在DNA损伤和衰老中的作用,我们为今后旨在开发新型治疗和干预方法的研究铺平了道路。由于我们尚未完全弄清AMeD综合征和Cockayne综合征的病因,治疗药物的开发工作一直没有进展。这项研究表明,患者的病理状况与细胞内产生的醛类衍生物 DPC 有关。这些结果有望有助于寻找清除醛类的化合物,从而帮助配制候选治疗药物"。这项研究的意义远不止遗传疾病,因为他们的发现表明,醛诱导的DNA损伤也可能在健康人的衰老过程中发挥作用。通过指出醛是导致衰老的物质,这项研究揭示了环境因素与细胞衰老之间错综复杂的联系。这可能会对人类的健康和寿命产生重大影响。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人