新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱

新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱 该图谱发表在《自然-衰老》(Nature Aging)杂志上,它发现了新的细胞群,可以解释为什么一些肌肉纤维比其他肌肉纤维衰老得更快。它还确定了肌肉对抗衰老的补偿机制。这些发现为未来的疗法和干预措施提供了途径,以改善肌肉健康和老年人的生活质量。这项研究是国际"人类细胞图谱"计划的一部分,该计划旨在绘制人体每种细胞类型的图谱,从而改变人们对健康和疾病的认识。随着年龄的增长,我们的肌肉会逐渐变弱。这会影响我们进行站立和行走等日常活动的能力。对某些人来说,肌肉流失会加剧,导致跌倒、行动不便、丧失自主能力,并引发一种叫做"肌肉疏松症"的病症。人们对肌肉随时间衰弱的原因仍然知之甚少。在这项新研究中,威康桑格研究所和中国中山大学的科学家们利用单细胞和单核测序技术以及先进的成像技术,分析了来自 17 个年龄在 20 岁至 75 岁之间的人的肌肉样本。研究小组发现,在来自老年样本的肌肉干细胞中,控制核糖体(负责生产蛋白质)的基因活性较低。随着年龄的增长,这损害了细胞修复和再生肌肉纤维的能力。此外,这些骨骼肌样本中的非肌肉细胞群产生了更多的促炎分子CCL2,将免疫细胞吸引到肌肉中,加剧了与年龄相关的肌肉退化。此外,还观察到与年龄有关的一种特定快肌肌纤维亚型的损失,这种肌纤维亚型是肌肉爆发力的关键。不过,他们首次发现了肌肉的几种补偿机制,似乎可以弥补这种损失。这些机制包括慢速肌纤维转而表达失去的快速肌纤维亚型的特征基因,以及剩余快速肌纤维亚型的再生增加。研究小组还在肌肉纤维中发现了特殊的细胞核群,它们有助于重建随着年龄增长而衰退的神经和肌肉之间的连接。研究小组在实验室培育的人类肌肉细胞中进行的基因敲除实验证实了这些细胞核在维持肌肉功能方面的重要性。这项研究的第一作者、威康桑格研究所的 Veronika Kedlian 说:"我们采用无偏见、多方面的方法来研究肌肉衰老,结合不同类型的测序、成像和调查,揭示了以前未知的衰老细胞机制,并突出了有待进一步研究的领域"。该研究的资深作者、中国广州中山大学的张洪波教授说:"在中国、英国和其他国家,我们都有老龄化人口,但我们对老龄化过程本身的了解却很有限。我们现在可以详细了解肌肉如何在衰老的影响下尽可能长时间地保持功能。"这项研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)的莎拉-泰克曼(Sarah Teichmann)博士是人类细胞图谱的创始人之一:"通过人类细胞图谱,我们正在以前所未有的方式详细了解人体,从人类发育的最初阶段一直到老年。有了这些对骨骼肌健康老化的新认识,世界各地的研究人员现在可以探索如何对抗炎症、促进肌肉再生、保护神经连接等。这样的研究发现对于制定治疗策略,促进后代更健康地步入老年有着巨大的潜力。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

新的脂质研究揭示长寿和慢性疾病的秘密

新的脂质研究揭示长寿和慢性疾病的秘密 新研究发现,小鼠不同器官和性别的脂质代谢发生了与年龄有关的重大变化,突出显示了肠道细菌产生的特定脂质的积累。这些发现还包括确定了一种导致肾脏性别差异的基因,可以提高我们对阿尔茨海默氏症和动脉粥样硬化等与年龄有关的疾病的认识。这项研究为今后研究人类脂质体和微生物组奠定了基础,有可能为这些疾病提供有针对性的治疗方法。资料来源:理化学研究所这些发现发表在《自然-衰老》杂志上,可以加深我们对阿尔茨海默氏症、动脉粥样硬化、肾病和癌症等与年龄有关的慢性疾病的了解。脂质通常以脂肪或油的形式存在,是我们体内储存能量的重要分子。此外,脂质还是信号分子和细胞膜的组成部分。新陈代谢将脂类和糖类等生物大分子分解成其组成部分会随着年龄的增长而减慢,这也有助于解释为什么随着年龄的增长,体重会越来越容易增加,而减肥却越来越困难。虽然人们知道这一点已有 50 多年,但脂质代谢的变化如何影响寿命和健康仍不清楚。在最近的研究中,理化学研究所 IMS 的津川浩和他的团队认为,在完全回答这个问题之前,我们需要详细了解实际的变化情况。只有这样,科学家们才能开始寻找衰老的脂质代谢与人体健康之间的联系。为此,他们利用小鼠绘制了与年龄有关的脂质代谢物变化图谱。研究人员利用一种尖端技术对小鼠脂质体生物样本中存在的所有脂质代谢物进行了多次快照,发现小鼠肾脏、肝脏、肺、肌肉、脾脏和小肠中的BMP型脂质随着年龄的增长而增加。这些脂质在胆固醇运输和细胞回收中心(溶酶体)内生物大分子的分解过程中发挥着关键作用。与年龄有关的溶酶体损伤可能会导致细胞制造更多的BMPs,从而引发进一步的新陈代谢变化,如增加肾脏中的胆固醇衍生物。研究人员还调查了肠道细菌对脂质体的影响,发现虽然肠道细菌会产生许多结构独特的脂质,但只有磺脂会随着年龄的增长而在肝脏、肾脏和脾脏中增加。事实上,在这些外周组织中甚至没有检测到来自肠道细菌的其他类脂代谢物。津川浩说:"众所周知,这类脂质参与调节免疫反应,因此我们下一阶段的研究将涉及检测肠道细菌衍生的磺脂类,以确定它们的结构和生理功能。"研究人员还发现,小鼠脂质体的性别差异与年龄有关,尤其是在肾脏中,老年雄性小鼠的脂质代谢物半乳糖基甘油酰胺水平高于老年雌性小鼠。这种差异归因于雄性小鼠体内UGT8基因表达的增加。了解这样的性别特异性代谢差异,可以揭示人类对与年龄有关的疾病的易感性。"我们的研究全面描述了小鼠脂质体随着衰老而发生的变化。在此过程中,我们创建了一个图谱,它将成为重要的全球资源,"津川浩说。"接下来,我们必须将这类研究扩展到人类脂质体和微生物组。这些发现强调了了解脂质代谢如何随着年龄的增长而发生变化的重要性,以及在设计与年龄相关疾病的治疗方法时以脂质组为目标的潜力。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究揭示了为什么生菜最好冷藏保存

新研究揭示了为什么生菜最好冷藏保存 绿叶蔬菜含有丰富的膳食纤维和营养物质,但它们也可能携带危险的病原体。伊利诺伊大学厄巴纳-香槟分校最近的一项研究调查了影响罗马生菜、绿叶生菜、菠菜、羽衣甘蓝和羽衣甘蓝等五种不同类型绿叶菜中大肠杆菌污染的因素。"我们在生菜上发现了很多致病因素,但羽衣甘蓝和其他黄铜类蔬菜的疫病却不多。我们想更多地了解不同绿叶蔬菜的易感性,"领衔作者、现任杜克大学博士后助理研究员的董梦怡说。董作为博士生在伊利诺伊大学农业、消费与环境科学学院食品科学与人类营养系(FSHN)进行了这项研究。研究人员用大肠杆菌 O157:H7 感染了五种蔬菜中每种蔬菜的整片叶子,并观察了在 4° C(39° F)、20° C(68° F)和 37° C(98.6° F)条件下储存后的情况。结果他们发现易感性是由温度和叶片表面特性(如粗糙度和天然蜡涂层)共同决定的。"在室温或更高的温度下,大肠杆菌在生菜上生长得非常快,但如果将生菜冷藏在 4° C(39° F)的温度下,我们会发现大肠杆菌的数量急剧下降。然而,对于羽衣甘蓝和羽衣甘蓝等蜡质蔬菜,我们却得到了相反的结果。在这些蔬菜上,大肠杆菌在较高温度下生长较慢,但如果它已经存在,在冷藏条件下可以存活更长时间。"即便如此,羽衣甘蓝和羽衣甘蓝总体上比生菜更不容易受到大肠杆菌污染。此外,这些蔬菜通常是煮熟食用的,这样可以杀死或灭活大肠杆菌,而生菜是生吃的。冲洗生菜确实有帮助,但并不能清除所有细菌,因为它们紧紧附着在叶子上。研究人员还将大肠杆菌O157:H7 接种到切开的叶片上,以比较完整叶片的完整表面和切开叶片的受损表面。"完整的树叶和刚切开的树叶会出现不同的情况。切下的叶子会释放出蔬菜汁,其中的营养物质会刺激细菌生长,"董解释道。不过,研究人员发现,菠菜、羽衣甘蓝和羽衣甘蓝汁实际上具有抗菌特性,可以防止大肠杆菌的感染。"为了进一步探索这些发现,他们从羽衣甘蓝和羽衣甘蓝中分离出汁液(裂解液),并将这种液体涂抹在生菜叶上,发现它可用作天然抗菌剂。研究人员说,其潜在应用可能包括抗菌喷雾或涂层,以控制收获前和收获后阶段的食源性病原体污染。"我们无法完全避免食物中的病原体。蔬菜是在土壤中生长的,而不是在无菌环境中,它们会接触到细菌,"合著者、FSHN 副教授、伊利诺伊州推广专家 Pratik Banerjee 说。"要解决这个问题很复杂,但我们可以在食品工业和食品供应链中采用最佳做法。研究界和联邦机构对解决这些问题很感兴趣,美国农业部对食品生产实行高标准,因此总体而言,美国的食品供应相当安全。"Banerjee 和董强调,他们并不想阻止人们食用新鲜水果和蔬菜;它们是健康饮食的一部分。他们总结说,只需遵循食品安全指南,彻底清洗生菜,将其存放在冰箱中,并关注您所在地区的任何食品安全召回指令。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法 瓦伦西亚理工大学(Universitat Politècnica de València)、瓦伦西亚大学(Universitat de València)、CIBER 生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(Nature Communications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV 分子识别研究和技术开发大学间研究所(IDM)副所长兼 CIBER-BBN 科学主任 Ramón Martínez Máñez 说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任 Isabel Fariñas 和 CIPF 的研究员 Mar Orzáez 指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(Isabel Fariñas)和 CIBERNED 的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED 和 Príncipe Felipe 研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。 ... PC版: 手机版:

封面图片

科学家揭示维生素D的抗衰老作用

科学家揭示维生素D的抗衰老作用 在一项新研究中,来自釜山国立大学和韩国食品研究所的研究人员Joung-Sun Park、Hyun-Jin Na和Yung-Jin Kim旨在确定维生素D/维生素D受体途径在肠干细胞(ISC)老化过程中对分化肠细胞(EC)的保护作用。维生素 D 对中肠 ISC 中与年龄和氧化应激相关的超数中心体积累的抑制作用。资料来源:2024 Park et al.研究人员指出:"本研究旨在利用成年果蝇肠道模型,确定 VitD/VDR 在 ISC 老化过程中对分化 EC 的保护作用。"研究人员利用成熟的果蝇中肠模型进行干细胞衰老生物学研究,发现维生素D受体基因敲除可诱导肠系膜细胞增殖、肠系膜细胞死亡、肠系膜细胞衰老和肠内分泌细胞分化。此外,年龄和氧化应激诱导的ISC增殖和中心体扩增也会因维生素D处理而减少。总之,这项研究提供了维生素D/VDR通路抗衰老作用的直接证据,包括在衰老过程中保护心肌细胞,并为探索果蝇健康衰老增强的分子机制提供了宝贵的见解。"我们的发现直接证明了维生素 D/维生素 D 受体通路的抗衰老作用,并为果蝇健康衰老的分子机制提供了见解"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

新研究揭示:压力山大的日子会让你看起来比实际上更老

新研究揭示:压力山大的日子会让你看起来比实际上更老 一项新的研究发现,年轻的成年人在压力大的日子里看起来和感觉上都比较老 - 但只有在他们也觉得自己对自己生活的控制力相对较弱的日子里才会这样。"有大量研究告诉我们,压力会让老年人觉得自己老了,甚至觉得自己比实际年龄老,"该研究的通讯作者、北卡罗来纳州立大学心理学教授 Shevaun Neupert 说。"当老年人感觉自己比实际年龄老时,就会产生一系列负面的健康后果。然而,对年轻人十几岁、二十几岁和三十几岁的人这一问题的研究却很少。深入了解各年龄段人群的这一现象,有助于我们制定干预措施,保护我们的身心健康。这项工作可能特别及时,因为压力研究人员发现,与前几代人年轻时经历的压力相比,现在年轻成年人经历的压力越来越大"。研究方法和主要结论在这项研究中,研究人员收集了 107 名年龄在 18 岁至 36 岁之间(平均年龄在 20 岁左右)的年轻人的数据。研究参与者在完成基线调查后,又连续八天进行了详细的日常调查。每日调查的目的是了解他们每天所承受的压力大小、他们认为自己当天对生活的控制能力有多强,以及他们当天的感觉和年龄。Neupert说:"关键的发现是,当研究参与者报告说承受的压力比平时大时,他们也报告说看起来和感觉上更老了。然而,只有当研究对象也报告说他们对自己生活的控制能力比平时差时,才会出现这种情况。值得注意的是,压力水平和控制水平都是相对的。"影响和未来方向换句话说,一个人可能报告说自己的压力相对较小,但如果压力水平高于他们通常报告的水平,研究人员就会看到这种效应。同样的道理,人们可以报告说他们对自己的生活仍有很大程度的控制权但如果控制权比他们通常报告的要小,研究人员就会看到这种效果。首先,这告诉我们,压力让人感觉变老的现象并不局限于老年人,年轻人也会出现这种情况。Neupert说:"这一点也很重要,因为我们知道,长期承受慢性压力会产生不良影响,而且当人们从青年期步入中年期40多岁和50多岁时,压力水平通常会越来越高。如果这些年轻人的压力水平已经达到了他们这个年龄段的历史高水平,而且这种压力正在影响他们的衰老程度,那么我们就必须密切关注我们用来评估这一代人与压力相关的身心健康的指标。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

为什么人类能看到狗看不到的颜色?新研究解释了原因

为什么人类能看到狗看不到的颜色?新研究解释了原因 作者、生物学副教授罗伯特-约翰斯顿(Robert Johnston)说:"这些视网膜有机体让我们第一次研究了这种非常具有人类特异性的特征。这是一个是什么让我们成为人类,是什么让我们与众不同的重要问题。"发表在《PLOS Biology》上的这一研究成果加深了人们对色盲、老年性视力丧失以及其他与感光细胞有关的疾病的了解。它们还证明了基因如何指示人类视网膜制造特定的色觉细胞,而科学家们认为这一过程是由甲状腺激素控制的。通过调整有机体的细胞特性,研究小组发现,一种名为视黄酸的分子决定了视锥是专门感应红光还是绿光。只有视力正常的人类和近亲灵长类动物才会发育红色传感器。几十年来,科学家们一直认为红色锥体是通过一种类似于抛硬币机制形成的,在这种机制下,细胞杂乱无章地致力于感知绿色或红色波长约翰斯顿团队最近的研究暗示,这一过程可能受甲状腺激素水平的控制。而新的研究表明,红色锥状体的形成是通过视黄酸在眼内精心策划的一连串特定事件实现的。视网膜有机体的标记,蓝色锥体为青色,绿色/红色锥体为绿色。帮助眼睛在弱光或黑暗条件下看东西的视杆细胞用品红色标出。资料来源:Sarah Hadyniak/约翰霍普金斯大学研究小组发现,在有机体早期发育过程中,视黄酸含量高,绿色视锥的比例就高。同样,低浓度的视黄酸会改变视网膜的遗传指令,在发育后期产生红色视锥。约翰斯顿说:"这可能仍有一些随机性,但我们的重大发现是,视黄酸是在发育早期产生的。这个时机对于学习和了解这些视锥细胞是如何产生的真的很重要。"绿视锥细胞和红视锥细胞非常相似,除了一种叫做视蛋白的蛋白质,它能检测光线并告诉大脑人们看到的颜色。不同的视蛋白决定了视锥细胞是成为绿色传感器还是红色传感器,尽管每个传感器的基因有96%是相同的。研究小组采用一种突破性技术,发现了有机体中这些微妙的基因差异,并在 200 天内跟踪了锥体比例的变化。作者莎拉-哈迪尼亚克(Sarah Hadyniak)说:"因为我们可以控制有机体中绿色和红色细胞的数量,所以我们可以推动细胞池变得更绿或更红,这对弄清视黄酸如何作用于基因具有重要意义。"她是约翰斯顿实验室的博士生,现在杜克大学工作。研究人员还绘制了 700 名成年人视网膜中这些细胞的不同比例。哈迪尼亚克说,看到人类的绿色和红色视锥比例如何变化是这项新研究最令人惊讶的发现之一。人类视网膜的切片。蓝色虚线表示单个绿色视锥,粉红色表示单个红色视锥。图片来源:Sarah Hadyniak/约翰霍普金斯大学科学家们仍然不完全明白绿色和红色锥状细胞的比例为什么会变化如此之大,而不会影响人的视力。约翰斯顿说,如果这些细胞决定了人类手臂的长度,那么不同的比例将产生"惊人差异"的手臂长度。黄斑变性会导致视网膜中心附近的光感受细胞丧失,为了了解黄斑变性等疾病,研究人员正在与约翰霍普金斯大学的其他实验室合作。目的是加深他们对锥状细胞和其他细胞如何与神经系统联系的理解。"未来的希望是帮助人们解决这些视力问题,"约翰斯顿说。"要实现这一目标还需要一段时间,但只要知道我们能制造出这些不同类型的细胞,就非常非常有希望。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人