抗衰老生物制药公司筹资4000万美元对其药物RLS-1469进行人体试验

抗衰老生物制药公司筹资4000万美元对其药物RLS-1469进行人体试验 衰老细胞会衰老并永久停止分裂,但它们不会死亡。随着时间的推移,它们会积聚在组织中,释放出大量的炎症化学物质和免疫调节剂,从而导致衰老。Rubedo计划首先开展一期研究,评估RLS-1469在治疗无法治愈的炎症性皮肤病、慢性特应性皮炎和慢性银屑病方面的疗效。临床前数据显示,该药物能显著减少皮肤中导致这些慢性退行性疾病的衰老细胞,希望RLS-1469能长期缓解这些患者的病情。"我们的使命是投资那些能够改变世界、服务于广阔市场的转型公司,"另一位出资人、Ahren Innovation Capital 的创始合伙人兼普通合伙人 Alice Newcombe Ellis 说。"我们相信,Rubedo 公司针对衰老细胞的变革性方法是朝着开发慢性衰老相关疗法迈出的令人印象深刻的一步,这将推动生物技术从治疗走向预防或疾病逆转。"Rubedo 还在开发其他疗法,选择性地针对肺部疾病中的衰老细胞,以满足尚未得到满足的医疗需求。Rubedo团队非常感谢支持者给予的资金和其他方面的支持。Rubedo生命科学公司首席商务官Ali Siam表示:"我们的投资者为Rubedo带来的丰富经验和资金将帮助公司快速推进我们的项目。我们期待着与这些领导者合作,他们在临床开发方面的丰富经验对我们进入 Rubedo 下一个发展阶段非常宝贵。"Rubedo专有的人工智能增强型药物发现平台Alembic可以识别特定的可药物靶点,并将其开发成改变疾病的治疗药物。 ... PC版: 手机版:

相关推荐

封面图片

研究发现减肥药中常用的GLP-1激动剂会在小鼠身上表现出抗衰老作用

研究发现减肥药中常用的GLP-1激动剂会在小鼠身上表现出抗衰老作用 根据这项研究的结果,衰老小鼠在接受胰高血糖素样肽-1受体激动剂(GLP-1RA)治疗后,全身状况都得到了改善,包括在体能和认知能力方面。令人吃惊的是,这些抗衰老作用甚至在细胞层面也很明显:"这些研究涵盖了各种组织、器官和循环白细胞的转录组和DNA甲基组,以及血浆代谢组"。更重要的是,研究人员能够用低剂量的 GLP-1 激动剂产生这些有益的效果,"对食量和体重的影响可以忽略不计"。虽然这项研究尚未经过同行评审,但其作者认为,这些发现的意义可以延伸到"基于抗衰老的疗法"。"我们的研究结果对于理解临床观察到的 GLP-1RA 多效作用的机理基础、设计老年相关疾病的干预试验以及开发抗衰老疗法具有广泛的意义"。GLP-1 激素在抑制饥饿、调节胰岛素和葡萄糖的分泌方面发挥着重要作用。餐后,GLP-1 激动剂会提高胰岛素水平,从而降低血糖水平。同时,这些药物会降低胃将其内容物排入小肠的速度,从而增加饱腹感和饱食感。我们在之前的一篇文章中提到,根据第二次SURMOUNT-OSA 研究的结果,礼来公司的 Tirzepatide GLP-1 产品能够将阻塞性睡眠呼吸暂停(OSA)成人患者的睡眠呼吸暂停严重程度降低约三分之二。这些研究结果最终可能会减少对瑞思迈持续气道正压(PAP)治疗设备的需求,目前这种设备是唯一获准用于治疗 OSA 的方法。当然,本周新发表的非同行评议研究只会让研究人员更加关注如何为本已前景广阔的 GLP-1 激动剂领域寻找新的药物相关载体。 ... PC版: 手机版:

封面图片

新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法 瓦伦西亚理工大学(Universitat Politècnica de València)、瓦伦西亚大学(Universitat de València)、CIBER 生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(Nature Communications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV 分子识别研究和技术开发大学间研究所(IDM)副所长兼 CIBER-BBN 科学主任 Ramón Martínez Máñez 说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任 Isabel Fariñas 和 CIPF 的研究员 Mar Orzáez 指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(Isabel Fariñas)和 CIBERNED 的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED 和 Príncipe Felipe 研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。 ... PC版: 手机版:

封面图片

工程化mRNA将人体变成药物制造生物工厂

工程化mRNA将人体变成药物制造生物工厂 信使核糖核酸(mRNA)包含指导细胞利用其内在机制制造特定蛋白质的指令。许多人都知道mRNA,因为它与 COVID-19 疫苗有关。但 mRNA 的潜在用途远不止于此,它还可以作为一种基于基因的治疗方法来治疗一系列疾病。最近发表的一项研究详细介绍了这种用途。得克萨斯大学西南医学中心的研究人员利用工程化 mRNA 促使细胞分泌自身药物,成功治疗了小鼠的牛皮癣和癌症。UT西南大学生物医学工程与生物化学系教授、该研究的通讯作者丹尼尔-西格瓦特(Daniel Siegwart)说:"有朝一日,这项技术也许能让病人在药房甚至在家里接受每月一次的治疗,而不是经常去医院或门诊输液,这将大大提高他们的生活质量。"在 mRNA 研究取得最新进展的同时,利用纳米颗粒递送治疗药物领域也取得了进展。不过,大部分研究都是为了让细胞生成蛋白质,直接用于细胞内,或者间接触发细胞通路,如基因编辑所需的通路。在目前的研究中,研究人员采取了一种不同的方法,重点是让这些重要的蛋白质离开细胞,以便它们能在身体的其他部位发挥治疗作用。在细胞内,信号肽(SPs)就像"隐喻的运输标签"(研究人员的术语),引导根据基因指令产生的蛋白质到达需要它们的地方。一些信号肽能将蛋白质导向细胞核和线粒体等细胞内部,而另一些信号肽(称为分泌型信号肽)则能将蛋白质分泌到细胞外空间。有鉴于此,研究人员假设,可以将一种工程SP复制粘贴到mRNA编码中,使通常被限制在细胞内空间的蛋白质大胆地进入循环。他们分离出了一段mRNA,该mRNA能产生由因子VII(一种参与凝血的蛋白质)衍生的分泌型SP。然后,他们将这种编码 SP 的 mRNA 连接到四种不同的 mRNA 序列上,这些 mRNA 序列可产生某些蛋白质:mCherry(一种荧光蛋白,可提供是否从细胞中分泌的视觉线索)、红细胞生成素(一种参与造血的人类蛋白质)、etanercept(一种用于治疗炎症性疾病的治疗性蛋白质)和抗 PD-L1 (另一种用于治疗癌症的治疗性蛋白质)。在实验室中,当修饰过的mRNA被包装进脂质纳米颗粒并输送到细胞中时,细胞会将由这些mRNA制成的SP标记蛋白质分泌到细胞外的液体中。牛皮癣是一种引起皮肤炎症的自身免疫性疾病,当研究人员用经过修饰的编码药物 etanercept 的 mRNA 治疗患有牛皮癣的小鼠时,它们的皮肤斑块明显减少。当他们用经过修饰的编码抗-PD-L1的mRNA治疗患有结肠癌和转移性黑色素瘤的小鼠时,肿瘤生长明显减少,小鼠的存活时间是未治疗小鼠的两倍。研究人员说,利用他们的信号肽工程核酸设计(SEND)让人体自身的机器制造和输送治疗用蛋白质,可能会提高目前通过输液给药的蛋白质药物的疗效,并有助于克服与之相关的副作用。他们说,利用这种技术生产的药物可以改善炎症性疾病、癌症、凝血障碍、糖尿病和各种遗传性疾病患者的健康和生活质量。这项研究发表在《美国国家科学院院刊》(PNAS)上。 ... PC版: 手机版:

封面图片

邓迪大学科学家发现阻止活跃癌细胞的方法

邓迪大学科学家发现阻止活跃癌细胞的方法 邓迪大学药物发现部门(DDU)与伦敦玛丽女王大学的一个合作研究项目发现了一种被称为工具分子的化学物质,它可以阻止活跃的癌细胞。通过合作推进癌症治疗使用这些工具分子可以迫使一种特定类型乳腺癌的肿瘤细胞进入促衰老状态类似于睡眠状态,在这种状态下,它们不再分裂或导致肿瘤生长。这种情况会使癌细胞对第二类工具分子(称为"衰老分解药物")产生敏感性,从而消灭癌细胞。它还可以"释放"癌细胞,让人体的免疫系统看到它们,从而提供更多的治疗机会。研究人员在研究基底样乳腺癌(BLBC)时开发出了这种"双拳"方法。癌症新疗法的潜力由巴兹慈善机构资助、伦敦玛丽女王大学衰老学教授兼表型筛选设施学术带头人 Cleo Bishop 领导的研究小组发现了一种迫使 BLBC 细胞进入促衰老状态的途径。随后,他们与邓迪大学药物发现组(DDU)的另一个团队合作,开发出了促进细胞衰老的工具分子。邓迪大学药物发现小组成员。资料来源:邓迪大学目前,其他地方正在开发药物疗法,以打出消灭细胞的"第二拳"。毕晓普教授说:"目前,治疗蓝细胞白血病最常见的方法是手术和不成熟的化疗方案。因此,由于缺乏量身定制疗法的可能靶点,而且临床过程具有侵袭性,这意味着患有 BLBC 的女性预后特别差。促衰老疗法能激活稳定的细胞周期停滞,阻止肿瘤生长,引发抗肿瘤免疫反应,并使癌症接受称为衰老素的新型治疗方案"。这项研究利用高内涵成像技术从 DDU 的多样性库中识别出工具分子,制药公司 ValiRx 现已选定这些分子进行进一步评估。本月,邓迪大学与该公司签署了一项为期五年的协议。根据该协议,"第一拳"工具分子将率先进入为期 12 个月的评估阶段,如果评估成功,三方将合资成立一家新公司。邓迪大学药物发现部业务发展主管夏洛特-格林(Charlotte Green)说:"近年来,一举两得的方法受到了广泛关注,但目前还没有临床先例,通过与 ValiRx 公司合作推进该项目,我们将引领研究成果向临床转化的方向。"ValiRx 首席执行官 Suzy Dilly 博士说:"邓迪大学和研究设施的实力令人印象深刻,在过去一年中,我们审查了来自邓迪大学团队的多个项目,我们相信,这份评估协议将成为一系列新项目中的第一个,可以纳入我们的管道。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

美FDA批准辉瑞针对血友病B的一次性基因疗法 每剂350万美元

美FDA批准辉瑞针对血友病B的一次性基因疗法 每剂350万美元 血友病属于一种先天性出血性疾病,一般是因为凝血因子异常所造成的,一旦发病就会伴随终身。其特征是凝血时间延长,终身具有轻微创伤后出血倾向,重症患者没有明显外伤也可发生“自发性”出血。FDA批准的这种基因疗法名为Beqvez,用于患有中度至重度血友病B的成年人。Beqvez是一种一次性治疗方法,使患者能够产生凝血因子IX并防止出血。如果没有这种被称为凝血因子IX的蛋白质,血友病B患者会更容易受伤,出血更频繁,持续时间更长。在试验中,它被证明优于标准治疗方法,减少了每周或每月定期静脉注射药物的需要。Beqvez通过减少医疗干预和治疗负担,有可能改变血友病B患者的生活。辉瑞公司发言人表示,该疗法将在本季度通过处方提供给符合条件的患者,不计保险和其他折扣的话,每剂价格高达350万美元,是迄今为止美国最贵的药物之一。宾夕法尼亚大学医学院血友病血栓形成综合项目主任Adam Cuker周五表示:“许多血友病B患者面临着定期输注因子IX的花费和生活方式的干扰,以及自发性出血事件,这些问题可能导致痛苦的关节损伤和行动问题。”Cuker补充说,辉瑞的药物有潜力通过减少长期的医疗和治疗负担,为患者带来变革性的影响。据世界血友病联合会的数据,全世界有超过3.8万人患有血友病B,但能负担得起Beqvez的人恐怕寥寥无几。这一批准对辉瑞来说是重要一步,该公司正试图在去年新冠业务迅速下滑后重新站稳脚跟。该公司已在抗癌药物和其他疾病领域的治疗上押下重注,以帮助其扭转业务颓势。辉瑞是投资于快速增长的基因和细胞疗法领域的少数几家公司之一,这些一次性、高成本的治疗针对患者的遗传来源或细胞,以治愈或显著改变疾病的进程。一些健康专家预计,这些疗法将取代人们用来管理慢性病的传统终身治疗。Beqvez将与澳大利亚的CSL Behring公司的Hemgenix竞争,后者是FDA批准的首个血友病B基因疗法,于2022年上市,价格也是每剂350万美元。值得注意的是,一些卫生专家表示,高昂的成本和物流问题等因素限制了Hemgenix和另一种批准的血友病A基因疗法的采用。 ... PC版: 手机版:

封面图片

美国批准全球首个基因编辑药物,标志着一种前所未有的新型药物问世

美国批准全球首个基因编辑药物,标志着一种前所未有的新型药物问世 美国批准了世界上第一种采用 Crispr 技术(一种基因编辑技术)的药物,这是一项获得诺贝尔奖的发现,有望成为修改基因以治疗疾病和提高作物产量的强大新工具。 这种名为 Casgevy 的新疗法由 Vertex Pharmaceuticals 和 CRISPR Therapeutics 开发,周五获准用于治疗患有痛苦的镰状细胞病的人。 美国食品和药物管理局这一具有里程碑意义的决定预示着一种强大的新型药物的出现,这种药物可以关闭或替换基因来解决长期以来困扰医生和研究人员的疾病。 几家公司正在开发基于 Crispr 的疗法,用于治疗心脏病、癌症和罕见遗传性疾病等疾病。下一代基因编辑技术有望使治疗变得更容易,副作用更少。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人