流感病毒如何潜入大脑 以及我们能做些什么?

流感病毒如何潜入大脑 以及我们能做些什么? 现在,在发表于《神经病理学》(Acta Neuropathologica)的一项研究中,研究人员揭示了 IAE 可能是由病毒通过特定细胞类型进入大脑引起的,并确定了可能的治疗策略。尽管IAE越来越常见,但令人惊讶的是,人们对流感病毒如何真正进入大脑并导致脑病(脑部疾病的总称)症状知之甚少。值得注意的是,IAE 的确切治疗方法仍然缺乏,而这正是大阪大学的研究人员想要解决的问题。为了研究流感病毒如何可能导致IAE,研究小组采用了一系列方法。除了在死于IAE的人的大脑中寻找病毒颗粒外,他们还通过向血液中注射甲型流感病毒,创建了一个该疾病的小鼠模型。他们还使用细胞培养方法来观察病毒感染不同类型细胞的情况。"在人脑、注射病毒的小鼠和培养细胞中,流感病毒倾向于积聚在内皮细胞中,"该研究的主要作者 Shihoko Kimura-Ohba 解释说。"这些细胞在血液和大脑之间建立了一道屏障,对于保护大脑免受有害物质的侵害非常重要。"由流感病毒引起严重脑水肿的IAE发病机制可以在没有病毒增殖的情况下建立:流感病毒蛋白在受流感病毒感染的内皮细胞(EC)中产生和积累。在不产生子代病毒的情况下,积累的病毒蛋白会诱导内皮细胞坏死,破坏血脑屏障,导致血管渗漏和出血。图片来源:©2024 Kimura-Ohba因此,在人脑和小鼠模型中,血液和大脑之间的屏障都受到了破坏。此外,研究人员还注意到,病毒实际上并没有在这些内皮细胞中繁殖,但却有大量由病毒制造的蛋白质。该研究的资深作者 Tomonori Kimura 说:"当我们看到这种病毒蛋白在大脑中积累时,我们意识到,旨在阻止病毒增殖的抗病毒药物不太可能有帮助。然而,旨在阻止病毒转录和翻译制造蛋白质的重要过程的抗病毒药物也是可用的"。当研究小组在用流感病毒处理的内皮细胞中试用这些抗病毒药物时,他们观察到病毒蛋白和细胞死亡减少了。在IAE的小鼠模型中,这些抗病毒药物在早期使用时也非常有效,这表明它们可能对人类患者有用。鉴于包括COVID-19 在内的多种不同病毒都可导致脑病,这些发现具有广泛的影响。此外,尽管IAE的护理工作在不断改进,但仍有一半以上的患者死亡或症状持续时间较长。更好地了解病毒如何导致脑病对于开发新的有效治疗方法非常重要。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

新型抗体瞄准流感病毒蛋白质未被探索的“阴暗面”

新型抗体瞄准流感病毒蛋白质未被探索的“阴暗面” 流感神经氨酸酶蛋白的四聚体(蓝色和浅蓝色)与针对其"暗面"的两种新型人类抗体(紫色/粉色和棕色/米色)的可变结构域结合。与催化位点朝上的 NA 四聚体的 4 倍轴一起观察。资料来源:美国国立卫生研究院这种抗体针对的是许多流感病毒(包括 H3N2 亚型病毒)中常见的 NA 蛋白的一个区域,它可能成为抗击流感对策的新目标。这项研究由美国国立卫生研究院下属的国家过敏和传染病研究所疫苗研究中心的科学家领导,研究论文最近发表在《免疫》杂志上。流感每年使全球数百万人患病,并可能导致重病和死亡。虽然接种流感疫苗可以减轻疾病负担,但每个季节都需要更新疫苗,以抵御快速演变的病毒的多种毒株和亚型。能够抵御多种流感病毒的疫苗可以防止新型流感病毒和流感病毒的再次出现,而无需每年重新配制疫苗或接种疫苗。改进流感疫苗和其他对策的方法之一是在病毒表面蛋白的"保守"区域不同病毒株之间往往相对不变的部分确定新的靶点。流感病毒 NA 是一种表面蛋白,包含球状的头部和狭窄的柄部。NA 头部的底部包含一个高度保守的区域,该区域具有抗体靶标(称为表位),使其容易与抗体结合并抑制病毒,而且不会受到耐药株常见突变的影响。这一区域被称为"暗面",因为它部分位置隐蔽,而且具有相对未被探索的特性。研究人员从两名甲型 H3N2 亚型流感(季节性流感病毒的主要亚型)康复者的血液中分离出了针对 NA 暗面的人类抗体。在实验室测试中,这种抗体抑制了 H2N2 亚型(1957-1958 年导致流感大流行的亚型)病毒以及来自人类、猪和鸟类的 H3N2 病毒的繁殖。在小鼠感染亚型 H3N2 病毒前一天或感染后两天给小鼠注射这种抗体,也能保护小鼠免受致命感染,这表明这种抗体可以在这种模型中治疗和预防流感。科学家们利用低温电子显微镜这种先进的显微镜技术,分析了其中两种抗体与 NA 结合后的结构。每种抗体都针对暗面不同的、不重叠的区域,这表明该区域有多个区域,可能有助于开发对策。这些研究结果表明,NA暗面具有独特的、以前尚未开发的表位,可用于开发新的疫苗和治疗策略。研究人员认为,针对NA暗面的抗体可以与抗病毒药物或其他类型的抗体结合使用,用于干预流感,因为它们对抗药性突变的流感病毒有效。研究人员还指出,NA阴暗面靶点可被纳入下一代流感广泛保护性疫苗中。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现能中和流感病毒的新型抗体

科学家发现能中和流感病毒的新型抗体 匹兹堡大学医学院的霍利-西蒙斯(Holly Simmons)领导的研究人员发现了一种新型抗体,这种抗体在中和各种类型的流感病毒方面显示出潜力。这一重大进展最近发表在《PLOS Biology》杂志上,它可能有助于制造出更普遍有效的流感疫苗。流感疫苗会促使免疫系统产生抗体,这种抗体可以与入侵流感病毒外部的一种叫做血凝素的病毒蛋白结合,阻止它进入人体细胞。不同的抗体会以不同的方式与血凝素的不同部分结合,而血凝素本身也会随着时间的推移而发生变化,从而导致能够躲避旧抗体的新流感病毒株的出现。每年都会根据对最主要毒株的预测提供新的流感疫苗。广泛的研究工作正在为开发能更好地同时抵御多种毒株的流感疫苗铺平道路。许多科学家都在研究能同时抵御被称为 H1 和 H3 的流感亚型的抗体。人类对流感病毒产生趋同的 H1N1-H3N2 中和抗体反应。面板来自 Simmons 等人报告的结构(Xu 等人的受体啮合模型 PDB 7TRH、7RRI 和 3UBE)。图片来源:Kevin McCarthy(CC-BY 4.0)西蒙斯及其同事在这项工作中发现了一个特殊的挑战在某些 H1 菌株中,组成血凝素的结构单元序列发生了微小的变化。某些能中和 H3 的抗体也能中和 H1,但如果 H1 的血凝素有这种变化(即 133a 插入),则不能中和 H1。现在,通过对患者血液样本进行一系列实验,研究人员发现了一类新型抗体,这种抗体能够中和某些H3菌株和某些有或没有133a插入物的H1菌株。独特的分子特征使这些抗体有别于其他能够通过其他途径交叉中和 H1 和 H3 菌株的抗体。这项研究扩大了可能有助于开发通过各种分子机制实现更广泛保护的流感病毒的抗体清单。此外,越来越多的证据表明,目前最常见的流感疫苗制造方法是在鸡蛋中培育,而这项研究支持放弃这种方法。作者补充说:"我们需要每年接种流感病毒疫苗,以跟上病毒不断进化的步伐。我们的研究表明,激发更广泛的保护性免疫的障碍可能低得出奇。只要有一系列正确的流感病毒暴露/接种,人类就有可能产生强大的抗体反应,中和不同的 H1N1 和 H3N2 病毒,为设计改良疫苗开辟了新的途径"。 ... PC版: 手机版:

封面图片

一种类似药物的分子有可能阻断甲型流感感染的初期阶段

一种类似药物的分子有可能阻断甲型流感感染的初期阶段 斯克里普斯研究所的科学家们开发出一种类似药物的分子,有可能阻断甲型流感感染的初期阶段。目前,流感药物的作用是在病毒感染人体后对症下药。然而,斯克里普斯研究所和阿尔伯特-爱因斯坦医学院的研究人员正在采取一种积极主动的方法。他们已经开发出类似药物的分子,旨在通过阻断病毒感染过程的初始阶段,在流感感染开始之前就加以预防。这种类似药物的抑制剂能阻止病毒进入人体的呼吸道细胞具体来说,它们针对的是甲型流感病毒表面的一种蛋白质血凝素。这些发现发表在 2024 年 5 月 16 日的《美国国家科学院院刊》上,标志着在开发预防流感感染的药物方面迈出了重要一步。通讯作者、斯克里普斯研究所汉森结构生物学教授伊恩-威尔逊(Ian Wilson)博士说:"我们正试图针对流感感染的最初阶段,因为从一开始就预防感染会更好,但这些分子也可用于抑制病毒感染后的传播。"研究人员说,这些抑制剂还需要进一步优化和测试,才能在人体中作为抗病毒药物进行评估,但这些分子最终有可能帮助预防和治疗季节性流感感染。而且,与疫苗不同,抑制剂可能不需要每年更新。初步发现和优化科学家们之前发现了一种小分子 F0045(S),其结合和抑制甲型 H1N1 流感病毒的能力有限。通讯作者、基因泰克公司资深首席科学家、斯克里普斯研究所前副教授丹尼斯-沃兰(Dennis Wolan)博士说:"我们首先开发了一种高通量血凝素结合测定法,它使我们能够快速筛选大型小分子化合物库,并通过这一过程找到了先导化合物F0045(S)。"与流感病毒血凝素蛋白相互作用的流感病毒分子抑制剂化合物 7。资料来源:斯克里普斯研究所在这项研究中,研究小组的目标是优化F0045(S)的化学结构,设计出具有更好的类药物特性和更特异的病毒结合能力的分子。首先,沃兰实验室使用了由两届诺贝尔奖获得者和共同作者 K. Barry Sharpless 博士首次开发的"SuFEx 点击化学",生成了一个对 F0045(S) 原始结构进行各种调整的大型候选分子库。在筛选这个分子库时,研究人员发现了两个分子4(R)和6(R)与F0045(S)相比具有更强的结合亲和力。接下来,威尔逊的实验室制作了 4(R) 和 6(R) 与流感血凝素蛋白结合的 X 射线晶体结构,这样他们就能确定分子的结合位点,确定其卓越结合能力背后的机制,并找出需要改进的地方。威尔逊说:"我们发现,这些抑制剂与病毒抗原血凝素的结合比原来的先导分子更紧密。通过使用点击化学,我们基本上扩展了这些化合物与流感相互作用的能力,使它们靶向抗原表面的额外口袋。"改进和未来方向当研究人员在细胞培养中测试 4(R) 和 6(R) 以验证它们的抗病毒特性和安全性时,他们发现 6(R) 无毒,与 F0045(S) 相比,细胞抗病毒效力提高了 200 多倍。最后,研究人员采用有针对性的方法进一步优化了 6(R),并开发出了化合物 7,事实证明该化合物具有更好的抗病毒能力。通讯作者 Seiya Kitamura 说:"这是迄今为止开发出的最有效的小分子血凝素抑制剂。就药效而言,很难再进一步改进分子,但还有许多其他特性需要考虑和优化,例如药代动力学、新陈代谢和水溶性。"在今后的研究中,研究小组计划继续优化化合物 7,并在流感动物模型中测试这种抑制剂。由于这项研究开发的抑制剂只针对 H1N1 流感病毒,研究人员还在努力开发针对 H3N2 和 H5N1 等其他流感病毒的类似药物抑制剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

CRISPR-Cas 基因编辑在实验室中完全消除 HIV 病毒

CRISPR-Cas 基因编辑在实验室中完全消除 HIV 病毒 荷兰阿姆斯特丹大学的研究人员报告,他们利用 CRISPR 基因编辑技术,成功的从受感染细胞中消除了 HIV 病毒。HIV 治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主 DNA 中的能力,尽管目前有多种有效的抗病毒药物用于治疗 HIV 感染,但只能抑制 HIV 在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV 可能会卷土重来。HIV 可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。在这项研究中,荷兰研究人员使用“分子剪刀”与两种 gRNA(向导 RNA) 来对抗所有已知的 HIV 毒株中保持相同的病毒基因组部分,并成功治愈了 HIV 感染者的 T 细胞。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的 CRISPR 系统可以灭活所有 HIV 病毒,将其从免疫细胞中清除。研究人员强调他们的工作仍然只是“概念证明”,不会很快成为 HIV 的治疗方法。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

研究人员在佛罗里达海豚尸体中发现高致病性禽流感病毒

研究人员在佛罗里达海豚尸体中发现高致病性禽流感病毒 报告记录了这一发现,这是北美首次在鲸类动物体内发现高致病性禽流感病毒,从 UF 海洋动物救援队接到佛罗里达州迪克西县一只受困海豚的报告后做出的初步反应,到随后从尸检中获得的大脑和组织样本中鉴定出病毒。佛罗里达州基西米市的布朗森动物疾病诊断实验室(Bronson Animal Disease Diagnostic Laboratory)证实,海豚的肺部和脑部都存在高致病性禽流感病毒。这些结果得到了爱荷华州艾姆斯国家兽医服务实验室的确认,该实验室对病毒亚型和病理类型进行了鉴定。经确认,该病毒为 HA 2.3.4.4b 支系的甲型高致病性禽流感(H5N1)病毒。随后在孟菲斯圣裘德儿童研究医院生物安全三级强化实验室进行了组织分析。Allison Murawski,D.V.M.,佛罗里达大学水生动物医学项目的前实习生,是这项研究的第一作者,并作为她的研究项目的一部分编写了一份关于海豚的病例报告。 她前往孟菲斯,与理查德·韦比博士密切合作,后者是世界卫生组织圣裘德动物和鸟类流感生态学研究合作中心的负责人,也是该论文的通讯作者。韦伯比的实验室调查了许多物种的禽流感病例,在确定病毒可能的来源、存在哪些独特的RNA特征或突变可能表明它有能力感染其他哺乳动物,以及如何从这一来源追踪病毒方面发挥了关键作用。研究人员对当地鸟类的基因组进行了测序,并研究了从东北海豹种群中分离出来的病毒,但目前仍然不知道海豚是从哪里感染病毒的,还需要做更多的研究。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家提出预防流感传播的新方法:阻断糖分子以阻止病毒传播

科学家提出预防流感传播的新方法:阻断糖分子以阻止病毒传播 现在,一项在幼年小鼠身上进行的新研究表明,不让病毒颗粒附着在SA上不仅会限制甲型流感病毒感染的进入,还会阻碍它们的排出(脱落)和在小鼠之间的传播。这种感染是季节性流感的主要原因,每年造成 36000 多名美国人死亡。科学家们说,虽然有疫苗来预防感染和对症治疗,但它们并非万无一失,还需要更多的策略来防止感染扩散。在纽约大学格罗斯曼医学院研究人员的领导下,研究小组将一种神经氨酸酶直接放入小鼠鼻腔,使SA受体脱氨酰基化,已知这种酶能使SA酸松动,无法继续附着在细胞表面。结果显示,使用神经氨酸酶处理后,在测试的半打流感病毒株中,小鼠对小鼠的传播率大幅降低了一半以上(从 51% 到 100% )。研究小组在美国微生物学会期刊《mBio》上发表的研究成果是在婴幼儿小鼠身上进行的。研究小组发现,婴幼儿小鼠与几个月大的小鼠或成年小鼠不同,它们的呼吸道上部有许多唾液酸。具体来说,研究小组阻断了两种SA,技术上称为α-2,3 SA和α-2,6 SA受体(锁)。众所周知,这两种物质广泛存在于人类的呼吸道中,研究人员说,这使得婴儿小鼠成为研究传染病在儿童中传播的一个强有力的可比模型,而儿童也被认为是流感在人群中传播的重要"驱动力"。这项研究的主要研究者、传染病专家米拉-奥蒂戈扎(Mila Ortigoza)博士说:"如果进一步的人体实验证明是成功的,那么去氨酰化神经氨酸酶可能会阻止流感的传播。"Ortigoza是纽约大学朗格尼分校医学系和微生物学系的助理教授,他说:"虽然目前的疫苗和治疗方法都是针对病毒的,但我们的研究首次证明,治疗宿主(受感染的小鼠或可能受感染的人类)以防止它们将病毒传播给另一个宿主,可能是另一种有效的抗击普遍性传染病的策略。"在考虑批准将神经氨酸酶作为人类治疗手段之前,还需要进行大量的临床研究。研究小组已经计划进行更多的实验,研究为什么婴儿更容易感染呼吸道病毒,以及阻断儿童体内的神经氨酸是否也能防止流感的传播。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人