约翰霍普金斯大学科学家解开夜盲症30年的生物学之谜

约翰霍普金斯大学科学家解开夜盲症30年的生物学之谜 5月14日发表在《美国国家科学院院刊》上的这一研究结果表明,名为G90D的视紫红质基因突变会产生一种不寻常的背景电"噪音",使眼睛的视杆细胞(即位于眼睛后部视网膜上负责夜间视力的细胞)脱敏,从而导致夜盲症,这种先天性疾病会导致弱光环境下的视力低下。该研究的作者写道,对异常电活动的识别可以"为未来的治疗干预提供目标"。约翰霍普金斯大学医学院神经科学系教授、博士 King-Wai Yau 说,这些电事件可以帮助科学家更好地了解眼睛的视杆细胞和视锥细胞是如何发挥作用的。这项研究由 Yau 和博士后研究员 Zuying Chai 领导。"众所周知,视紫红质中的G90D突变会产生背景电噪声,使杆状细胞脱敏,但这种'噪声'的性质及其精确的分子来源近30年来一直没有得到解决,"Yau说。"我们能够通过一种G90D rhodopsin表达水平非常低的小鼠模型来帮助解决这种疾病的机制问题。"在比较基因工程小鼠体内 G90D 的低表达水平和人类夜盲症患者体内 G90D 的表达水平时,作者得出结论,振幅低但频率极高的异常电活动可能是导致人类夜盲症的最大原因。除了不寻常的电噪声之外,人们还知道视紫红质会产生另一种叫做自发热异构化的电活动,即视紫红质分子内部的热能触发视紫红质随机激活。与观察到的异常电活动不同,G90D rhodopsin 的自发异构化表现出振幅高但频率低的特点。研究人员在实验中发现,G90D rhodopsin 的自发异构化率比正常 rhodopsin 高约两百倍,但它们的杆适配效应并不高,不足以在很大程度上导致人类的夜盲症。资料来源:King-Wai Yau 实验室在大多数情况下,视杆细胞对光线非常敏感,但对于夜盲症患者来说,视杆细胞无法准确探测光线的变化,在黑暗中也无法发挥作用。Yau 说,夜盲症患者需要更明亮的光线才能在弱光环境下看清东西。几十年来,尽管研究人员知道 G90D 基因突变,但他们一直难以确定它是如何导致夜盲症的,因为以前带有这种突变的小鼠模型会产生高水平的背景噪声,产生类似于背景光的效果,而小鼠的视杆细胞会很快适应这种背景光。这使得研究人员难以准确测量这种突变的信号效应。为了解决这个问题,约翰霍普金斯大学医学院的研究人员对小鼠进行了基因改造,使小鼠体内的 G90D 低表达,这一水平相当于小鼠自然群体中正常视紫红质表达量的 0.1%。这使研究人员能够区分 G90D 突变小鼠产生的不同类型的活动,就像几乎没有或根本没有等效的背景光存在一样。科学家们用一种高分辨率的方法记录了小鼠视网膜中单个视杆细胞的电活动,他们用一根超细玻璃吸管(宽度约为人头发丝的七十分之一)吸入了能够导电的生理盐水溶液。"实际上可以看到这些事件,"Yau 说。"我们使用了一种非常特殊的技术吸管记录技术,以如此高的分辨率记录活动,以至于如果一个视黄素分子发生异构化或激活,我们就能看到,因为这会导致电流发生变化。"G90D是与夜盲症有关的四种斜视蛋白突变之一。第一作者Chai说,下一步要做的是确定其他视黄素突变(T94I、A292E和A295V)是如何导致这种病症的。导致G90D夜盲症的机制可能与导致这种病症的其他三种视网膜视蛋白突变相似。编译来源:ScitechDailyDOI: 10.1073/pnas.2404763121 ... PC版: 手机版:

相关推荐

封面图片

科学家意外制造出六足小鼠胚胎

科学家意外制造出六足小鼠胚胎 研究人员在小鼠发育早期关闭一个基因,最终意外地得到了六足哺乳动物胚胎,并取代了其外生殖器。大多数四肢动物的外生殖器和后肢都是从相同的原始结构发育而来的。 本次实验中被关闭的 Tgfbr1 基因参与了一条信号通路,为正在形成的身体提供从躯干到尾部的方向。这条通路为正在发育的胚胎细胞提供了“创造后肢”或“外生殖器”的指令。与对照小鼠相比,团队仔细观察了突变小鼠腿部组织中的 DNA,并发现染色质发生了重塑,控制细胞 DNA 访问的蛋白质已转换为“腿部”结构,而不是“生殖器”结构。该项研究发表在《自然通讯》杂志上。

封面图片

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞 艺术家们利用显微镜图像和图形渲染,展示了一个能够感知定向化学线索并自我组织响应的最小合成细胞。图片来源:约翰-霍普金斯大学医学院井上实验室,由 Shiva Razavi 和 Turhan Pathan 创作,经编辑了解对称性破坏细胞运动之前的一个步骤是打破对称,当细胞分子最初对称排列时,通常在受到刺激后重组为不对称的模式或形状。这类似于迁徙的鸟类在对阳光或地标等环境指南针做出反应时转变为新的队形,从而打破对称。在微观层面上,免疫细胞会感知集中在感染部位的化学信号,并打破对称,穿过血管壁到达受感染的组织。当细胞打破对称性时,它们会转变为极化和不对称结构,为向目标移动做好准备。"对称性破缺的概念对生命至关重要,影响着生物学、物理学和宇宙学等多个领域,"在约翰-霍普金斯大学攻读研究生时领导这项研究的希瓦-拉扎维(Shiva Razavi)博士说,他在约翰霍普金斯大学攻读研究生时领导了这项研究,现在是麻省理工学院的博士后研究员。"了解对称性破缺是解开生物学基本原理和发现如何利用这些信息来设计治疗方法的关键。"长期以来,人们一直认为找到在合成细胞中模仿和控制对称性破坏的方法对于了解细胞如何检测其化学环境并重新排列其化学轮廓和形状至关重要。在这项研究中,科学家们创造了一个带有双层膜的巨大囊泡一个由磷脂、纯化蛋白质、盐和提供能量的 ATP 组成的裸体简化合成细胞或原细胞。原细胞呈球形,因此被昵称为"泡泡"。在实验中,科学家们成功地设计出了具有化学感应能力的原细胞,它能促使细胞打破对称性,从一个近乎完美的球体变成一个凹凸不平的形状。研究人员说,该系统专门设计用于模仿免疫反应的第一步,能够根据中性粒细胞感知到的周围蛋白质发出攻击病菌的信号。拉扎维说:"我们的研究展示了类细胞实体如何能够感知外部化学线索的方向,模拟生物体内的条件。通过从零开始构建类细胞结构,我们可以更好地识别和理解细胞以最简化的形式打破对称性所需的基本组成部分。"给药领域的未来应用科学家们说,有朝一日,化学传感可用于体内靶向给药。约翰-霍普金斯大学医学院细胞生物学教授、细胞动力学中心主任、资深作者井上隆成(Takanari Inoue)博士说:"我们的想法是,可以把任何你想要的东西蛋白质、RNA、DNA、染料或小分子打包到这些气泡中,利用化学传感告诉细胞该去哪里,然后让细胞在预定目标附近破裂,这样药物就能被释放出来。"为了激活囊泡的化学感应能力,研究人员在合成细胞中植入了两种作为分子开关的蛋白质FKBP和FRB。蛋白质 FKBP 被置于细胞中心,而 FRB 则被置于细胞膜上。当科学家们在气泡细胞外引入一种化学物质雷帕霉素时,FKBP就会移动到细胞膜上与FRB结合,从而引发一种叫做肌动蛋白聚合的过程,也就是合成细胞骨架的重组。在原细胞内部,化学反应产生了由肌动蛋白组成的杆状结构,对细胞膜施加压力,使其弯曲。研究人员使用了一种名为共聚焦显微镜的专门快速三维成像技术来记录原细胞的化学感应能力;他们必须以每15到30秒一帧的速度快速记录图像,因为原细胞会对化学信号做出快速反应。下一步,研究人员的目标是让这些合成细胞具备向所需目标移动的能力。最终,研究人员希望设计出的合成细胞能在靶向药物输送、环境传感以及其他需要精确移动和对刺激做出反应的领域中发挥重要的潜在应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家用合成生物学和三维打印技术打造可编程的生命材料

科学家用合成生物学和三维打印技术打造可编程的生命材料 从第 1 天(左)到第 14 天(右),3D 打印在水凝胶中的植物细胞生长并开始繁茂成黄色的细胞簇。图片来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338最近,研究人员一直在开发工程活体材料,主要依靠细菌和真菌细胞作为活体成分。然而,植物细胞的独特特性激起了将其用于工程植物活体材料(EPLMs)的热情。以前,科学家们创造的基于植物细胞的材料结构相当简单,功能有限。余子怡、狄振高及其同事希望改变这种状况,他们制作了形状复杂的 EPLM,其中含有可定制行为和功能的基因工程植物细胞。24 天后,植物细胞在两种不同的生物墨水中产生的颜色在这种叶形工程活体材料中清晰可见。来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338研究人员将烟草植物细胞与含有农杆菌的明胶和水凝胶微粒混合,农杆菌是一种常用于将DNA片段转入植物基因组的细菌。然后将这种生物墨水混合物在平板上或装有另一种凝胶的容器内进行 3D 打印,形成网格、雪花、树叶和螺旋等形状。接着,用蓝光固化打印材料中的水凝胶,使结构硬化。在随后的 48 小时内,EPLMs 中的细菌将 DNA 转移到生长中的烟草细胞上。然后他们用抗生素清洗这些材料,以杀死细菌。在接下来的几周里,随着植物细胞在 EPLMs 中生长和复制,它们开始根据转移的 DNA 生成蛋白质。在这项概念验证研究中,转移的DNA使烟草植物细胞能够产生绿色荧光蛋白或贝特类色素红色或黄色的植物色素,可作为天然着色剂和膳食补充剂。通过用两种不同的生物墨水打印叶形 EPLM一种墨水沿叶脉产生红色素,另一种墨水在叶片的其他部分产生黄色素研究人员表明,他们的技术可以产生复杂的、空间可控的多功能结构。研究人员说,这种 EPLM 结合了生物体的特征和非生物物质的稳定性和耐久性,可以用作细胞工厂,生产植物代谢物或药物蛋白质,甚至用于可持续建筑应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家找到女性不孕的关键原因

科学家找到女性不孕的关键原因 多达 3.7% 的女性会因此而不孕,其中约 30% 的病例是由于基因变异造成的。参与领导这项研究的中国清华大学纪家葵教授多年来一直在研究这种病症。"2019年,我们的合作者李教授团队遇到了一个卵巢早衰的家庭,其中一个名为Eif4enif1的基因的变化似乎是该病的罪魁祸首,"纪教授说。研究人员决定在小鼠体内复制这种基因变化,试图了解它是如何影响人类不孕症的。他们的研究表明,这些小鼠的卵子受到线粒体细胞的动力室变化的影响,并将他们的新发现发表在《发育》杂志上。研究人员使用CRISPR技术在小鼠体内引入基因改变。他们让这些小鼠长大,然后将它们的生育能力与DNA未被编辑的小鼠的生育能力进行比较。该研究的第一作者、医学博士/博士生丁玉玺(Yuxi Ding,音译)发现,经过基因编辑的老龄小鼠的总卵泡(含有发育中卵子的小囊)平均数量减少了约40%(每窝幼鼠的平均数量减少了33%)。重要的是,当小鼠在培养皿中生长时,约有一半的受精卵无法存活到发育的早期阶段。这表明,与人类患者一样,这些小鼠也遇到了生育问题。当研究人员在显微镜下研究这些小鼠的卵子时,他们注意到它们的线粒体有些不同寻常。线粒体产生细胞(包括卵细胞)所需的能量。线粒体通常均匀地分布在整个卵子中,但具有基因变异的小鼠卵子中的线粒体却聚集在一起。纪教授说:"实际上,我们对线粒体的差异感到惊讶。在我们做这项研究的时候,Eif4enif1和线粒体之间的联系还没有被发现过"。看来,这些行为不正常的线粒体很可能是造成这些小鼠生育问题的原因,因此研究人员提出,恢复线粒体的正常行为可能会改善生育能力。这项研究为今后人类不孕症的研究提供了方向,例如确定卵巢早衰患者的卵子中是否也存在线粒体缺陷,以及卵子受精后胚胎中是否也存在这些线粒体缺陷。此外,测试恢复线粒体的正常分布是否能提高生育能力也可能成为一种新的治疗策略。纪教授说:"我们的研究表明,挽救卵细胞线粒体异常可能成为临床不孕症遗传变异患者的潜在治疗目标。"该研究得到了国家自然科学基金、首都医科大学杰出青年人才项目、中华人民共和国科学技术部和北京医院管理局青年项目的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家利用 pH 诱导靶向癌细胞

科学家利用 pH 诱导靶向癌细胞 如何让纳米机器人精确识别和杀死癌细胞?根据发表在《nature nanotechnology》的一项研究,瑞典卡罗琳学院(Karolinska Institutet)的研究人员描述了一种刺激响应机器人开关纳米装置,能根据 pH 触发。当 pH 6.5 时释放死亡受体(death receptors)导致癌细胞死亡,pH 7.4 时保持惰性。对携带人类乳腺癌异种移植物的小鼠实验显示,该纳米装置导致癌症生长减少最多 70%。 via Solidot

封面图片

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识 Anthony Burnett说:“坦率地说,我们对将酵母转化为光养生物(能够利用光能的生物)是多么简单感到震惊。我们所需要做的就是移动一个基因,它们在光照下的生长速度比在黑暗中快2%。没有任何微调或精心的哄骗,它就是有效的。”很容易地为酵母配备这样一个进化上重要的特征,可能对我们理解这种特征是如何起源的意义重大,以及如何将其用于研究生物燃料生产、进化和细胞老化等问题。寻找能量提升这项研究的灵感来自于该小组过去研究多细胞生命进化的工作。该小组去年在《自然》杂志上发表了他们的第一份关于多细胞长期进化实验(MuLTEE)的报告,揭示了他们的单细胞模式生物“雪花酵母”是如何在3000代的时间里进化出多细胞的。在这些进化实验中,出现了多细胞进化的一个主要限制:能量。“氧气很难扩散到组织深处,因此你得到的组织没有能力获得能量。”“我一直在寻找绕过这种基于氧的能量限制的方法。”在不使用氧气的情况下给生物体提供能量的一种方法是通过光。但是从进化的角度来看,将光转化为可用能量的能力是复杂的。例如,允许植物利用光作为能量的分子机制涉及许多基因和蛋白质,这些基因和蛋白质在实验室和自然进化中都很难合成和转移到其他生物体中。幸运的是,植物并不是唯一能将光转化为能量的生物。保持简单生物体利用光的一种更简单的方法是利用视紫红质:一种无需额外的细胞机制就能将光转化为能量的蛋白质。该研究的主要作者Autumn Peterson说:“视紫红质在生命之树上随处可见,显然是生物体在进化过程中相互获取基因而获得的。”这种类型的基因交换被称为水平基因转移,涉及在不密切相关的生物体之间共享遗传信息。水平基因转移可以在短时间内引起看似巨大的进化跳跃,比如细菌如何迅速对某些抗生素产生耐药性。这可能发生在所有的遗传信息中,特别是在视紫红质蛋白中。“在寻找将视紫红质转移到多细胞酵母中的方法的过程中,我们发现我们可以通过将其转移到常规的单细胞酵母中来了解过去在进化过程中发生的视紫红质水平转移。”为了观察他们是否能给单细胞生物配备太阳能视紫红质,研究人员将一种由寄生真菌合成的视紫红质基因添加到普通的面包酵母中。这种特殊的基因被编码为一种视紫红质,这种视紫红质会被插入细胞的液泡中,液泡是细胞的一部分,像线粒体一样,可以将视紫红质等蛋白质产生的化学梯度转化为能量。配备了空泡紫红质,酵母在光照下的生长速度大约快了2%这对进化来说是一个巨大的好处。“在这里,我们有一个单一的基因,我们只是把它跨环境拉到一个以前从未有过光养性的谱系中,它就这样工作了。”“这表明,这种系统真的很容易,至少有时,在一个新的有机体中发挥作用。”这种简单性提供了关键的进化见解,研究人员说明了“视紫红质能够轻易地在如此多的谱系中传播,以及为什么会这样”。由于空泡功能可能有助于细胞衰老,该小组也开始合作研究视紫红质如何能够减少酵母的衰老效应。其他研究人员已经开始使用类似的新型太阳能酵母来研究推进生物生产,这可能标志着生物燃料合成等方面的重大进步。然而,这一团队更热衷于探索这种额外的好处如何影响单细胞酵母向多细胞生物的转变。“我们有这个美丽的简单多细胞模型系统,”Burnett说,他指的是长期运行的多细胞长期进化实验(MuLTEE)。“我们想给它光营养,看看它是如何改变它的进化的。” ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人