根据发表在《Cell Metabolism》期刊上的一项研究,怀孕的压力会让女性的生理年龄增加最多两岁,但这一趋势可能会在接下来

根据发表在《Cell Metabolism》期刊上的一项研究,怀孕的压力会让女性的生理年龄增加最多两岁,但这一趋势可能会在接下来几个月自行逆转。研究人员称,母乳喂养婴儿的女性可能会比怀孕早期在生物学上“更年轻”。流行病学家 Elizabeth Bertone-Johnson 称该发现代表了又一个“令人信服”的证据,表明怀孕期间和怀孕后会对健康产生深远的影响。耶鲁大学医学院 Kieran O'Donnell 称,生物衰老未必是线性过程的发现令人惊讶。研究人员分析了 68 名参与者的血液样本,发现怀孕时细胞的年龄衰老了 1-2 岁,但产后三个月细胞的年龄看起来年轻了 3 -8 岁不同表观遗传时钟算法提供了不同的估值。 https://www.science.org/content/article/pregnancy-may-increase-biological-age-2-years-though-some-people-end-younger https://www.cell.com/cell-metabolism/fulltext/S1550-4131(24)00079-2 我们原来误会董哥了,他是想帮女孩返老还童啊,可惜人们不知他的深意

相关推荐

封面图片

科学家揭示维生素D的抗衰老作用

科学家揭示维生素D的抗衰老作用 在一项新研究中,来自釜山国立大学和韩国食品研究所的研究人员Joung-Sun Park、Hyun-Jin Na和Yung-Jin Kim旨在确定维生素D/维生素D受体途径在肠干细胞(ISC)老化过程中对分化肠细胞(EC)的保护作用。维生素 D 对中肠 ISC 中与年龄和氧化应激相关的超数中心体积累的抑制作用。资料来源:2024 Park et al.研究人员指出:"本研究旨在利用成年果蝇肠道模型,确定 VitD/VDR 在 ISC 老化过程中对分化 EC 的保护作用。"研究人员利用成熟的果蝇中肠模型进行干细胞衰老生物学研究,发现维生素D受体基因敲除可诱导肠系膜细胞增殖、肠系膜细胞死亡、肠系膜细胞衰老和肠内分泌细胞分化。此外,年龄和氧化应激诱导的ISC增殖和中心体扩增也会因维生素D处理而减少。总之,这项研究提供了维生素D/VDR通路抗衰老作用的直接证据,包括在衰老过程中保护心肌细胞,并为探索果蝇健康衰老增强的分子机制提供了宝贵的见解。"我们的发现直接证明了维生素 D/维生素 D 受体通路的抗衰老作用,并为果蝇健康衰老的分子机制提供了见解"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法 瓦伦西亚理工大学(Universitat Politècnica de València)、瓦伦西亚大学(Universitat de València)、CIBER 生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(Nature Communications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV 分子识别研究和技术开发大学间研究所(IDM)副所长兼 CIBER-BBN 科学主任 Ramón Martínez Máñez 说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任 Isabel Fariñas 和 CIPF 的研究员 Mar Orzáez 指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(Isabel Fariñas)和 CIBERNED 的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED 和 Príncipe Felipe 研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。 ... PC版: 手机版:

封面图片

慢性压力助长癌症转移原因已被找到

慢性压力助长癌症转移原因已被找到 图为小鼠的肺癌转移图。该小鼠接受了旨在模拟癌症患者所经历的压力的实验。图片来源:埃格布拉德实验室/冷泉港实验室与对照组(左侧)相比,应激小鼠(中间一栏)的癌细胞扩散得更快更猛。相比之下,用一种名为 DNase I 的酶处理应激小鼠体内的癌细胞(右栏)后,癌细胞基本不再增殖,而且应激诱导的转移也明显减少。研究团队通过模拟患有癌症的小鼠的慢性压力得出了这一发现。他们首先切除了小鼠乳房中生长的肿瘤并将癌细胞扩散到肺部。接下来,他们让小鼠承受压力,并观察到小鼠的转移性病变惊人地增加,转移率增加了4倍。团队发现,称为糖皮质激素的应激激素作用于中性粒细胞。这些“应激”的中性粒细胞形成蜘蛛网状结构,这被称为中性粒细胞胞外陷阱(NET)。当中性粒细胞排出DNA时,NET就会形成。通常,它们可保护人体免受微生物的入侵。然而在癌症中,NET创造了一个有利于转移的环境。为了确认压力会触发NET的形成而导致转移增加,研究人员进行了3项测试。首先,使用抗体去除小鼠体内的中性粒细胞;然后给动物注射一种破坏NET的药物;最后,使用体内中性粒细胞对糖皮质激素没有反应的小鼠。最终每项测试都取得了相似的结果。研究团队发现,即使在没有癌症的小鼠中,慢性压力也会导致NET的形成进而改变肺组织。“这几乎是在为身体组织患上癌症作好准备。”研究人员称,减轻压力应成为癌症治疗和预防的一个组成部分。 ... PC版: 手机版:

封面图片

研究提醒:生酮饮食真的会加速衰老

研究提醒:生酮饮食真的会加速衰老 这种饮食方式最初用于治疗难治性癫痫,近年来被越来越多的人滥用于减肥和瘦身。然而,最新的一项研究表明,这种饮食方式可能会加速细胞衰老。研究人员通过小鼠试验发现,长达21天的生酮饮食会导致小鼠心脏、肾脏、肝脏和大脑等多个器官的细胞衰老。在实行了6个月生酮饮食的人类志愿者中,也观察到了类似的细胞衰老和多种相关的促炎分泌因子水平增加现象。细胞衰老是指细胞的功能逐渐受损,最终导致组织和器官的老化和功能下降。这对身体健康和长寿可能会有负面影响。研究人员还尝试更换生酮饮食中不同的脂肪来源,但仍旧观察到了细胞衰老的增加。这表明,生酮饮食本身可能与细胞衰老有直接关联,而不仅仅是某种特定成分导致的结果。此外,生酮饮食导致的细胞衰老比例与一些组织损伤模型中报告的比例相似,这进一步强调了生酮饮食可能对身体健康造成的潜在风险。那么,生酮饮食到底是如何导致细胞衰老的呢?研究人员发现,生酮饮食诱导了一种名为p53的蛋白的活化,这是一种与细胞衰老和肿瘤抑制有关的蛋白。p53的活化会引发细胞衰老,从而导致器官和组织功能的下降。这些研究结果引发了人们对生酮饮食安全性和长期影响的关注。虽然生酮饮食在短期内可能能够帮助人们减肥,但其对健康的潜在影响需要引起足够的重视。因此,对于正在追求健康减肥的朋友来说,选择饮食方式要慎重考虑,并且应该在专业人士的指导下进行。科学的健康饮食应该是多样化的,包含适量的碳水化合物、蛋白质和脂肪,以确保身体获得全面的营养,同时避免潜在的健康风险。 ... PC版: 手机版:

封面图片

针对阿尔茨海默氏症的研究发现女性大脑中有更多"老"细胞

针对阿尔茨海默氏症的研究发现女性大脑中有更多"老"细胞 加利福尼亚大学圣迭戈分校的工程师们发现,某些脑细胞比其他脑细胞衰老得更快,在阿尔茨海默氏症患者中更为常见。他们还注意到,特定脑细胞的衰老在性别间存在差异,与男性大脑皮层相比,女性大脑皮层中"老"少突胶质细胞的比例相对于"老"神经元更高。这一发现得益于一种名为MUSIC(单细胞多核酸相互作用图谱)的新技术,它能让研究人员窥视单个脑细胞内部,并绘制出染色质即DNA和RNA的紧密盘绕形式之间的相互作用图谱。这项技术使研究人员能够以单细胞分辨率观察这些相互作用,并研究它们如何影响基因表达。这项工作的详细情况发表在《自然》杂志上的一篇论文中。该研究的资深作者、加州大学圣地亚哥分校雅各布斯工程学院舒建-基因-雷生物工程系教授钟胜说:"MUSIC 是一种强大的工具,可以让我们更深入地挖掘阿尔茨海默病的复杂性。这项技术有可能帮助我们发现阿尔茨海默病病理的新分子机制,从而为更有针对性的治疗干预和改善患者预后铺平道路。"人脑中的细胞组成了一个复杂的网络,它们以错综复杂的方式进行交流和互动。在每个细胞中,包括染色质和 RNA 在内的基因成分动态地相互作用,决定着细胞的关键功能。随着脑细胞的生长和衰老,染色质和 RNA 之间的相互作用也会发生变化。而在每个细胞内,这些复合物也会发生很大变化,尤其是在成熟细胞中。然而,揭示这些相互作用的细微差别仍然是一项艰巨的挑战。MUSIC是一种尖端工具,它为了解单个脑细胞的内部运作提供了一个窗口。钟教授的团队利用 MUSIC 分析了 14 名 59 岁及以上捐献者的死后大脑样本,特别是人类额叶皮层组织,其中有些人患有阿尔茨海默病,有些人则没有。他们发现,不同类型的脑细胞表现出染色质和 RNA 之间不同的相互作用模式。有趣的是,短程染色质相互作用较少的细胞往往表现出衰老和阿尔茨海默病的迹象。钟说:"通过这种变革性的单细胞技术,我们发现有些脑细胞比其他脑细胞'老'。他解释说,值得注意的是,与健康人相比,阿尔茨海默氏症患者的这些老化脑细胞比例更高。"这一发现有助于开发阿尔茨海默病的新疗法。如果能确定这些老化细胞中的失调基因,并了解它们在局部染色质结构中的功能,那就能确定新的潜在治疗靶点。研究还发现了脑细胞衰老的性别差异。在雌性小鼠的大脑皮层中,研究人员发现老化的少突胶质细胞与老化的神经元的比例更高。少突胶质细胞是一种脑细胞,为神经元周围提供保护层。鉴于少突胶质细胞在维持大脑正常功能方面的关键作用,老化少突胶质细胞的增加可能会加剧认知能力的衰退。女性大脑皮层中存在不成比例的老化少突胶质细胞,这可能会对女性患神经退行性疾病和精神疾病的风险增加带来新的启示。接下来,研究人员将致力于进一步优化MUSIC,以便利用它来识别导致特定脑细胞加速衰老的因素,如调控基因和基因回路。随后,研究人员将制定策略来阻碍这些基因或基因回路的活动,希望能减轻大脑的衰老。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家正尝试将水熊虫蛋白植入人类细胞

科学家正尝试将水熊虫蛋白植入人类细胞 怀俄明大学的研究人员领导的一项新研究发现,在人体细胞中表达关键的水熊虫蛋白会减缓新陈代谢,这为了解这些难以被杀死的无脊椎动物如何在最极端的条件下生存提供了重要的启示。研究小组重点研究了一种名为CAHS D的特殊蛋白质,众所周知,这种蛋白质可以防止极端干燥(脱水)。通过各种方法,研究人员展示了 CAHS D 在受到压力时如何转变成凝胶状,从而保护分子并防止干燥。研究人员在发表的论文中写道:"这项研究深入揭示了水熊虫以及其他潜在的耐干燥生物是如何利用生物分子凝结在干燥环境中存活下来的。除了应激耐受性,我们的研究结果还提供了一条途径,可以围绕诱导细胞甚至整个生物体的生物稳态来开发技术,从而延缓衰老并增强储存和稳定性。"迟发型生物已经证明,它们可以在酷热和严寒的环境中生存,可以在对人类致命的高辐射环境中生存,也可以在长期缺水的环境中生存水通常是生命的必需品。它们甚至可以在太空中生存。先前的研究揭示了水熊虫历经数亿年积累起来的令人印象深刻的生存技巧。从根本上说,在 CAHS D 的帮助下,它们非常善于减缓生命进程,而这对人类细胞也可能有用。怀俄明大学的分子生物学家西尔维娅-桑切斯-马丁内斯说:"令人惊讶的是,当我们将这些蛋白质引入人体细胞时,它们会凝胶化,减缓新陈代谢,就像在水熊虫体内一样。当把含有这些蛋白质的人类细胞置于生物静止状态时,它们会变得更能抵抗压力,从而把水熊虫的一些能力赋予人类细胞。"在未来的某一天,我们也许能找到方法,将这种惊人的水熊虫复原力传递给我们自己的细胞和组织,从而有可能减缓生物衰老,并有助于在低温条件下安全储存细胞的治疗,例如器官移植。要利用这种能力的转移,还需要大量的进一步研究,目前已经在进行一些研究,探讨水熊虫蛋白能否稳定用于治疗遗传疾病的重要血液制品。早期迹象表明,在多个领域,包括当环境压力存在时,这种蛋白质会被智能地激活,而当环境压力不存在时,这种蛋白质又会失活。怀俄明大学分子生物学家托马斯-布斯比(Thomas Boothby)说:"当压力得到缓解时,水熊虫凝胶就会溶解,人体细胞就会恢复正常的新陈代谢。"这项研究发表在《蛋白质科学》上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人