斯坦福研发最新疫苗,能覆盖所有毒株,抗体反应比现有mRNA疫苗强100倍

斯坦福研发最新疫苗,能覆盖所有毒株,抗体反应比现有mRNA疫苗强100倍 Biohub和斯坦福的科学家研究出一种基于铁蛋白的新冠纳米颗粒疫苗Delta-C70-Ferritin-HexaPro(DCFHP)。 DCFHP-alum可以涵盖所有已知新冠变种,并且所能引起的抗体反应比现有mRNA疫苗强100倍。在37˚C下储存14天后依然是稳定的。 在初次免疫一年后的强化免疫中也能引起强烈的抗原反应。 DCFHP-alum可以在非人灵长类动物中产生强效、持久、广谱的中和抗体。 如果能证实它在人体内也能产生同样强效的抗体,或许新冠病毒将和天花一样成为历史。 这项研究背后的金主是扎克伯格 。

相关推荐

封面图片

饶毅推荐用国产疫苗的依据是,他本人接种了疫苗没有副反应而抗体很高(多高?晒一下嘛),而他海外亲戚用mRNA疫苗会发烧。这种毫无科

饶毅推荐用国产疫苗的依据是,他本人接种了国产疫苗没有副反应而抗体很高(多高?晒一下嘛),而他海外亲戚用mRNA疫苗会发烧。这种毫无科学常识、满脑子老中医思维的人居然当着北大生命科学学院教授兼首都医科大学校长呢。请北大生命科学学院的学生说说,这个名教授犯了什么生物医学常识性错误?

封面图片

中国制药商康希诺开始试生产针对奥密克戎的疫苗,这将是中国使用mRNA技术研发的首批疫苗之一,该技术推动了美国和其他国家的疫苗接种

中国制药商康希诺开始试生产针对奥密克戎的疫苗,这将是中国使用mRNA技术研发的首批疫苗之一,该技术推动了美国和其他国家的疫苗接种。 康希诺称,当被用于完成三针新冠灭活疫苗接种的人群的加强针时,其疫苗针对奥密克戎BA.5变异株产生的中和抗体水平是之前一版疫苗的29倍。

封面图片

mRNA疫苗在人体试验中发挥效用 击退致命脑癌

mRNA疫苗在人体试验中发挥效用 击退致命脑癌 这项技术最著名的是 COVID-19 疫苗,它已被证明能迅速提醒免疫系统更有效地攻击胶质母细胞瘤,在小鼠、狗和人类身上都有应用。大家可能还记得 2020 年和 2021 年那段令人难忘的日子,mRNA 分子本质上是告诉细胞生产哪些蛋白质的天然蓝图。通过对它们进行工程改造,使其产生与病原体相关的无害蛋白质,就能训练免疫系统在真菌出现时将其击退。这些疗法在大流行病期间取得实际成功后,将mRNA 疗法应用于癌症的可能性也随之出现,并取得了令人瞩目的早期成果。研究小组表示,新版本有两个关键进步。首先,疫苗采用了患者自身肿瘤细胞的样本,实现了个性化。其次,输送机制更加复杂,最终会产生更强的免疫反应。该研究的资深作者埃利亚斯-萨尤尔(Elias Sayour)说:"我们注射的不是单个颗粒,而是像洋葱一样相互缠绕的颗粒群,就像一个装满洋葱的袋子。不到48小时,我们就能看到这些肿瘤从我们所说的'冷'免疫冷,免疫细胞很少,免疫反应非常沉默转变为'热',免疫反应非常活跃。鉴于这种情况发生得如此之快,这让我们感到非常惊讶,这告诉我们,我们能够非常迅速地激活免疫系统的早期部分来对抗这些癌症,而这对于释放免疫反应的后期效应至关重要。"这项经美国食品及药物管理局批准的小型临床试验旨在测试安全性和可行性,只包括四名胶质母细胞瘤患者。在手术切除肿瘤后,从每位患者的肿瘤中提取 RNA,然后扩增 mRNA 并将其包裹在粒子团中。然后将其注入患者体内,引发免疫反应。研究小组表示,目前全面评估临床效果还为时过早,但患者的无病时间和存活时间确实比预期的要长。接下来将进行扩大的一期试验,最多将有 24 名患者参与,以确定最佳安全剂量。再往后,第二阶段将有 25 名儿童参与。这项研究发表在《细胞》杂志上。研究小组在下面的视频中讨论了这项试验。mRNA 疫苗引发对抗恶性脑肿瘤的激烈免疫反应 ... PC版: 手机版:

封面图片

8宗接种新冠疫苗后严重不良反应个案中1宗被评定为与疫苗相关

8宗接种新冠疫苗后严重不良反应个案中1宗被评定为与疫苗相关 #疫情记者会快讯 新型冠状病毒感染应变协调中心表示,新冠疫苗开始接种至今,有2,388宗不良事件,在轻微不良事件中,被认为与疫苗相关的个案里,国药灭活疫苗占1,111宗,mRNA疫苗占637宗。 在8宗严重不良反应个案中,有3宗接种了国药灭活疫苗、5宗接种了mRNA疫苗;8个个案当中,有1宗被评为与疫苗相关。 ...

封面图片

与病毒一起进化:更新COVID-19疫苗的反应会受到以前接种疫苗的影响

与病毒一起进化:更新COVID-19疫苗的反应会受到以前接种疫苗的影响 COVID-19大流行已经结束,但该病毒仍在继续流行,每周都有数千人住院治疗,并经常产生新的变种。由于该病毒具有极强的变异和免疫逃避能力,世界卫生组织(WHO)建议每年更新 COVID-19 疫苗。但一些科学家担心,首批 COVID-19 疫苗取得的巨大成功可能会对更新版本产生不利影响,从而削弱年度疫苗接种计划的效用。类似的问题也困扰着每年的流感疫苗接种活动;一年的流感疫苗接种所产生的免疫力可能会干扰随后几年的免疫反应,从而降低疫苗的效力。圣路易斯华盛顿大学医学院研究人员的一项新研究有助于解决这个问题。与对流感病毒的免疫不同,先前对导致 COVID-19 的SARS-CoV-2 病毒的免疫不会抑制后来的疫苗反应。研究人员报告说,它反而会促进广泛抑制性抗体的发展。重复接种疫苗的益处这项在线发表于《自然》(Nature)上的研究表明,反复接种 COVID-19 疫苗的人最初接种的是针对原始变种的疫苗,之后接种的是针对变种的强化疫苗和更新疫苗产生的抗体能够中和多种 SARS-CoV-2 变种,甚至是一些远缘冠状病毒。研究结果表明,定期重新接种 COVID-19 疫苗非但不会阻碍人体识别和应对新变种的能力,反而会使人们逐渐积累起广泛的中和抗体,从而保护他们免受新出现的 SARS-CoV-2 变种和其他一些冠状病毒的感染,甚至是那些尚未出现的感染人类的病毒。资深作者、赫伯特-S-加瑟医学教授、医学博士迈克尔-S-戴蒙德(Michael S. Diamond)说:"一个人接种的第一种疫苗会诱发强烈的初级免疫反应,这种反应会影响对后续感染和疫苗接种的反应,这种效应被称为'印记'。原则上,印记可以是积极的、消极的或中性的。在这种情况下,我们看到的强烈印记是积极的,因为它与具有显著广泛活性的交叉反应中和抗体的发展相结合。"医护人员于 2020 年 12 月接种了第一剂 COVID-19 疫苗。圣路易斯华盛顿大学医学院研究人员的一项研究发现,重复接种更新版的 COVID-19 疫苗可促进抗体的发展,从而中和导致 COVID-19 以及相关冠状病毒的多种病毒变体。资料来源:马特-米勒/华盛顿大学印记是免疫记忆发挥作用的自然结果。第一次接种会触发记忆免疫细胞的发育。当人们接种第二次与第一次非常相似的疫苗时,第一次疫苗激发的记忆细胞就会被重新激活。这些记忆细胞主导并形成对后续疫苗的免疫反应。就流感疫苗而言,印记会产生负面影响。产生抗体的记忆细胞会排挤产生抗体的新细胞,人们针对新疫苗中的菌株产生的中和抗体相对较少。但在其他情况下,"印记"可能是积极的,因为它能促进交叉反应抗体的产生,从而中和最初疫苗和后续疫苗中的毒株。关于印记及其影响的研究为了了解印记如何影响对重复接种COVID-19疫苗的免疫反应,戴蒙德和包括第一作者、研究生梁洁玉在内的同事们研究了小鼠或接种过一系列COVID-19疫苗和增强剂的人的抗体,这些疫苗和增强剂首先针对的是原始变体,然后是奥米克变体。一些人类参与者也自然感染了导致COVID-19的病毒。第一个问题是印记效应的强度。研究人员测量了参与者体内有多少中和抗体是针对原始变体、奥米克隆变体或两者的。他们发现,只有极少数人产生了针对奥米克龙的特异性抗体,这种模式表明最初的疫苗接种产生了强烈的印记效应。但他们也发现,原始变体的抗体也很少。绝大多数中和抗体与这两种抗体都有交叉反应。下一个问题是交叉反应效应的范围有多大。根据定义,交叉反应抗体可识别两种或两种以上变体的共同特征。有些特征只有相似的变种才共享,有些特征则是所有 SARS-CoV-2 变种甚至所有冠状病毒共享。为了评估中和抗体的广泛性,研究人员用一组冠状病毒对抗体进行了测试,其中包括来自两个omicron支系的SARS-CoV-2病毒、一种来自穿山甲的冠状病毒、导致2002-03年SARS流行的SARS-1病毒以及中东呼吸综合征(MERS)病毒。这些抗体能中和除 MERS 病毒以外的所有病毒,因为 MERS 病毒与其他病毒来自不同的冠状病毒家族分支。进一步的实验表明,这种显著的广泛性是由于原始疫苗和变异疫苗的结合。只接种针对 SARS-CoV-2 原始变体疫苗的人产生了一些交叉反应抗体,这些抗体能中和穿山甲冠状病毒和 SARS-1 病毒,但水平较低。不过,在接种奥米克疫苗后,针对两种冠状病毒的交叉反应性中和抗体有所增加。综上所述,这些研究结果表明,定期重新接种针对变种的最新 COVID-19 疫苗不仅可以让人们抵御疫苗中的 SARS-CoV-2 变异株,还可以抵御其他 SARS-CoV-2 变异株和相关冠状病毒,可能包括尚未出现的变种。分子微生物学教授、病理学与免疫学教授戴蒙德说:"在 COVID-19 大流行之初,世界人口的免疫系统还很幼稚,这也是病毒传播如此之快、造成如此之大破坏的部分原因。我们并不确定每年接种更新的 COVID-19 疫苗是否能保护人们免受新出现的冠状病毒的感染,但这是有可能的。这些数据表明,如果这些交叉反应抗体不会迅速减弱我们需要长期跟踪它们的水平才能确定它们可能会在相关冠状病毒引起的大流行中提供一定甚至是实质性的保护。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

宾夕法尼亚大学医学院开发出高效mRNA疫苗 可预防致命的H5N1型禽流感病毒

宾夕法尼亚大学医学院开发出高效mRNA疫苗 可预防致命的H5N1型禽流感病毒 佩雷尔曼医学院微生物学教授 Scott Hensley 博士强调了 mRNA 技术在疫苗开发中的灵活性。他解释说:"mRNA 技术使我们能够更灵活地开发疫苗;我们可以在对具有流行潜力的新病毒株进行测序后数小时内开始制造 mRNA 疫苗。在以往的流感大流行期间,如 2009 年的甲型 H1N1 流感大流行,疫苗难以生产,直到最初的大流行浪潮平息后才开始供应。"斯科特-亨斯利(Scott Hensley)博士。资料来源:宾夕法尼亚大学医学院合作与历史背景亨斯利的实验室与 mRNA 疫苗先驱、诺贝尔奖获得者德鲁-韦斯曼(Drew Weissman)医学博士的实验室合作开展了这项研究。魏斯曼说:"在2020年之前,专家们认为流感病毒造成大流行的风险最大,如果发生这种情况,我们能选择的疫苗也很有限。COVID-19向我们展示了基于 mRNA 的疫苗作为快速保护人类免受新病毒侵袭的工具的威力,我们现在已经做好了更好的准备,以应对包括流感在内的各种具有大流行潜力的病毒。"传统与 mRNA 疫苗生产大多数流感疫苗都是以鸡蛋为基础的,专家们在受精鸡卵中注入他们预测的优势病毒株,让其复制,然后将病毒灭活,用于全球分发的流感疫苗中。然而,在生产这些传统疫苗之前,病毒必须首先适应在受精卵中复制,这可能需要长达六个月的时间,这为在流感大流行的头几个月最需要疫苗时快速生产疫苗带来了潜在的问题。研究结果和疫苗功效宾夕法尼亚大学的研究人员开发了一种 mRNA 疫苗,针对在鸟类和牛类中广泛流行的 H5N1 病毒的一种特定亚型。虽然这种病毒很少感染人类,但有人担心这种病毒可能会进化并导致人类大流行。研究人员发现,疫苗在小鼠和雪貂体内引起了强烈的抗体和 T 细胞反应。更重要的是,动物在接种疫苗一年后仍能保持高水平的抗体。此外,研究人员还发现,与未接种疫苗的对照组相比,接种疫苗的动物在感染 H5N1 病毒后清除病毒的速度更快,症状更少。研究人员还指出,所有接种疫苗的动物在感染 H5N1 病毒后都存活了下来,而所有未接种疫苗的动物都死亡了。最后,研究人员将小鼠对 mRNA 疫苗的反应与它们对传统蛋基疫苗的反应进行了比较,发现 mRNA 疫苗同样有效;两种疫苗都能引起强烈的抗体反应,与之前是否接触过季节性流感无关。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人