【豆瓣9.1 科幻】《挽救计划》在未来的某一天,来自太阳的能量正在减少。尽管这种减少是微乎其微的,但通过数据分析可以发现,这是一

【豆瓣9.1 科幻】《挽救计划》在未来的某一天,来自太阳的能量正在减少。尽管这种减少是微乎其微的,但通过数据分析可以发现,这是一种呈指数发展的衰减;也就是说未来某一天,地球将失去来自太阳的能量,最终进入冰河时代,这一切的起因是一种全新的单细胞生物噬星体。主人公格雷斯便是在这样的前提下,背负人类未来命运的重要使命来到了太空之中。故事开局便是格雷斯在插满管子的床上醒来,他追寻遗失的记忆,开始调查鲸鱼座т星未被噬星体吞噬的原因。在这里他不仅发现了噬星体的秘密,还结识了面临同样困境的波江座外星人洛基...

相关推荐

封面图片

太阳爆发强耀斑 究竟会对我们造成什么影响?

太阳爆发强耀斑 究竟会对我们造成什么影响? 据国家空间天气监测预警中心发布太阳耀斑信息提示:北京时间2024年5月5日14时01分,太阳爆发了一个强耀斑(X1.3级)。该事件发生时中国处于白天,耀斑对中国上空电离层产生了影响。预计未来三天,仍有可能爆发M级甚至X级以上耀斑。防御指南:通信系统通过调整通信频率或改变通信方式来避免通信质量下降或中断。国家空间天气监测预警中心将密切跟踪事件发展,及时发布预报预警信息。太阳耀斑是什么?太阳耀斑是太阳上最剧烈的活动现象之一,周期约为11年。其主要观测特征是,太阳大气局部区域突然变亮,常伴随有各种能段电磁辐射和粒子发射的增强,亮度上升迅速,下降较慢。虽然太阳耀斑的寿命仅在几分钟到几十分钟之间,但是释放的能量却相当于十万甚至一百万次强火山爆发的总能量,或相当于上百亿枚百吨级氢弹爆炸。太阳耀斑作为太阳表面的强烈能量喷发,分为A、B、C、M、X五个级别,其中A为能量最小级别,而本次太阳耀斑为最大级别X。太阳强耀斑爆发如何影响地球?太阳强耀斑的爆发,到底会给生活在地球上的我们带来什么样的影响呢?如果把耀斑爆发看作是太阳打了个“喷嚏”,地球也会因此“感冒”吗?专家介绍,太阳的外层大气从太阳表面喷出,形成充盈整个太阳系的太阳风,地球就浸泡其间,只不过有地球磁场作为天然屏障我们才得以生存。太阳活动会导致太阳风和地球空间环境产生各种变化,正如地球大气中的短期变化过程被称为“天气”一样,日地空间中发生的各种短期变化过程被称为“空间天气”。太阳的剧烈活动,比如耀斑和日冕物质抛射等,经常会制造空间天气事件来袭扰地球,并可能引发“空间天气灾害”。这些灾害主要是太阳以辐射和高能物质的形式发出,影响近地空间以及地面的人造设施。 比如太阳耀斑会影响向阳面的地球电离层,短波通信、导航定位以及海上搜救,还有一些应急通信,都是跟电离层状态息息相关的。 这一类灾害正随着人类太空科技的进步而逐渐凸显出来,尤其是对卫星、航天器安全,以及航空、通信、导航等领域产生影响和危害。太阳耀斑对我们的生活有何影响?国家空间天气监测预警中心首席预报员陈安芹表示,其实太阳耀斑本身的影响相对来说比较小,但是它伴随的一些其他现象,比如说日冕物质抛射到达地球,可能引起一些强烈的地磁暴。这时候像长距离输电,就应该减少一些负荷,减少供电,像一些卫星的载荷,也要适当关闭一些,减少影响。来源: @国家预警发布、国家空间天气监测预警中心、中国天气网、央视新闻相关文章:四个太阳耀斑同时爆发 日冕物质抛射即将轰击地球太阳爆发X1.6强耀斑 官方预报:未来三天可能出现地磁暴未来3天可能爆发M级甚至X级以上太阳耀斑NASA太阳动力学天文台捕捉到X1.6级强烈太阳耀斑爆发场景[视频]欧空局与NASA的太阳轨道器联手捕捉到太阳蓬松日冕的惊人细节 ... PC版: 手机版:

封面图片

【豆瓣8.5 科幻】《太阳系度假指南》这是一本献给好奇太空探险者的必备指导手册,会告诉你未来可能会发生的太空旅行的样子。我们将从

【豆瓣8.5 科幻】《太阳系度假指南》这是一本献给好奇太空探险者的必备指导手册,会告诉你未来可能会发生的太空旅行的样子。我们将从基础知识开始:训练、打包,以及微重力健康和生活的基本原理。然后,我们将详细探讨你的行程安排。我们将前往太阳系的所有行星和其他游览地点。

封面图片

下一个太阳极盛期能否解开太阳伽马射线图像之谜?

下一个太阳极盛期能否解开太阳伽马射线图像之谜? 太阳在 2013 年 10 月至 2015 年 1 月期间发射的伽马射线彩色密度图,每光子能量介于 5 和 150 千兆电子伏特之间,由 NASA 的费米-LAT 望远镜记录。它叠加在美国宇航局太阳动力学天文台于 2014 年 12 月获得的太阳紫外线假彩色图像上。资料来源:Arsioli and Orlando 2024 & NASA/SDO/Duberstein在上一次太阳极大期,太阳两极地区的高能辐射最为活跃,这一现象至今仍无法解释。葡萄牙里斯本大学(Ciências ULisboa)科学学院的一位研究人员率先进行的一项研究报告了这一发现。发表在《天体物理学杂志》上的一项新研究制作了一部用伽马射线观测太阳十四年的压缩影片,这一可视化工具显示,与这些高能光子的预期均匀分布相反,太阳圆盘在极地地区会变得更亮。在太阳活动高峰期,太阳在伽马射线中的光辉在最高纬度地区占主导地位的趋势非常明显,2014年6月的情况就是如此。了解伽马射线发射这项研究由葡萄牙天体物理学和空间科学研究所(IA)的布鲁诺-阿西奥利(Bruno Arsioli)和里斯本大学科学学院(Ciências ULisboa)领导,它可能有助于人们了解使太阳发出比物理学家预期亮十倍的伽马射线的未知过程。它还可以为空间天气预报提供信息。太阳伽马射线产生于我们恒星的光环和太阳耀斑中,也从恒星表面释放出来。最新的伽马射线是这项研究的重点。布鲁诺-阿西奥利(Bruno Arsioli)说:"太阳受到来自银河系外各个方向的接近光速的粒子的袭击。这些所谓的宇宙射线是带电的,会被太阳的磁场偏转。那些与太阳大气相互作用的粒子会产生伽马射线雨。"美国宇航局费米伽马射线太空望远镜的艺术家概念图。费米望远镜每隔三小时就会在地球轨道上扫描整个天空。图片来源:NASA 戈达德太空飞行中心/Chris Smith (USRA)科学家们认为,这些伽马射线雨在太阳圆盘的任何地方出现的几率都是相同的。这项研究表明,宇宙射线可能会与太阳的磁场相互作用,从而产生伽马射线分布,而这种分布在恒星的各个纬度上并不均匀。布鲁诺-阿西奥利补充说:"我们还检测到了两极之间的能量差异。在南极,能量较高的光子(20 到 150 千兆电子伏特)发射过剩,而能量较低的光子大多来自北极。"科学家们还无法解释这种不对称现象。在太阳活动周期的最大值期间,伽马射线更频繁地辐射到高纬度地区。2014年6月,太阳磁场发生逆转时,伽马射线尤其集中在太阳两极。这是指太阳磁场偶极子交换其两个符号,众所周知,这种奇特的现象发生在太阳活动的高峰期,每十一年一次。太阳活动与磁场动力学"我们发现的结果挑战了我们目前对太阳及其环境的理解,"这项研究的共同作者、的里雅斯特大学、INFN 和斯坦福大学的埃莱娜-奥兰多(Elena Orlando)说。"我们证明了太阳伽马射线发射的不对称性与太阳磁场翻转之间存在很强的相关性,这揭示了太阳天文学、粒子物理学和等离子体物理学之间可能存在的联系"。所使用的数据来自伽马射线卫星费米大面积望远镜(Fermi-LAT)在 2008 年 8 月至 2022 年 1 月期间长达 14 年的观测。这一时期涵盖了一个完整的太阳周期,从最低点到下一个太阳周期,2014 年达到顶峰。挑战之一是将太阳辐射与背景天空中其他众多伽马射线源区分开来,这些伽马射线源与太阳的明显轨迹交叉。布鲁诺-阿西奥利(Bruno Arsioli)和他的同事埃莱娜-奥兰多(Elena Orlando)制作了一个工具,将所有太阳伽马射线事件整合在一个400至700天的窗口内,这个窗口可以在14年期间滑动。通过这种可视化,极地过量的时刻以及南北能量差异变得清晰可见。"研究太阳的伽马射线辐射是研究和了解恒星大气层物理过程的一个新窗口,"阿西奥利说。"在两极产生这些过量伽马射线的过程是什么?也许除了宇宙射线与太阳表面的相互作用之外,还有其他产生伽马射线的机制"。然而,如果我们坚持研究宇宙射线,它们可能会成为太阳内部大气层的探测器。对这些费米-LAT观测数据的分析还激发了一种新的理论方法,这种方法应该考虑对太阳磁场进行更详细的描述。太阳伽马射线的产生与太阳耀斑和日冕物质抛射更为频繁的壮观时期之间可能存在的联系,以及这些联系与我们恒星磁性构造的变化之间可能存在的联系,可能是改进预测太阳活动的物理模型的一个要素。这些都是空间天气预报的基础,对保护空间卫星上的仪器和地球上的电信及其他电子基础设施至关重要。布鲁诺-阿西奥利说:"2024年和明年,我们将经历一个新的太阳极大期,太阳磁极的另一次倒转已经开始。我们预计到 2025 年底将重新评估磁场反转之后,两极是否会出现伽马射线发射过剩的情况。"埃莱娜-奥兰多补充道:"我们已经找到了揭开这个谜团的钥匙,这为我们指明了未来的方向。费米望远镜将在未来几年内运行并观测太阳,这一点至关重要。"但是,太阳伽马射线可能有更多的信息需要揭示和进一步关注。现在发表的这项研究将加强下一代伽马射线空间观测站对太阳进行持续监测的科学依据。如果高能辐射确实携带着太阳活动的信息,那么下一次任务就应该计划提供太阳伽马射线辐射的实时数据。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

活在当下的努力,都是生命的累积,所有的收获,都会在未来的某一天开花结果。人生是一种累积的过程,你只要愿意去做,让自己行动,循序渐

活在当下的努力,都是生命的累积,所有的收获,都会在未来的某一天开花结果。人生是一种累积的过程,你只要愿意去做,让自己行动,循序渐进的就可以有更好的改变。在成功的道路上,每个人都是一座山,世上最难越的山,其实是自己。不断往上走,哪怕只是一小步,也能到达新的高度超越竞争者是一种能力。不需要你们跟任何人比较,因为每个人的优缺点都是不同的,人生中最大的敌人是自己,跟自己比较才是最好的选择,只要能够超过昨天的自己就是进步。

封面图片

扎克伯格:AI芯片不再短缺 但电力供应将出现瓶颈

扎克伯格:AI芯片不再短缺 但电力供应将出现瓶颈 为了支持这一观点,扎克伯格称,许多新的数据中心正在消耗50兆瓦至100兆瓦的电力,其中特别大的数据中心甚至达到150兆瓦。基于该发展趋势,数据中心消耗300兆瓦或500兆瓦,甚至1000兆瓦的电力,似乎只是个时间问题。对此,扎克伯格提出疑问:这种指数级的AI训练和能量曲线还能持续多久?这个问题使能源生产成为了人们关注的焦点。扎克伯格强调,能源生产可能很快成为投资热点。但是,建造一座新的发电站并不是一项简单的任务。考虑到法规(尤其是核能)、输电线路规划和建设,从制定计划到向电网输送电力可能需要很多年的时间。之前就有报道称,许多企业正在耗费大量电力。与此同时,美国各州正试图减少对化石燃料发电的依赖,这使得吸引关键企业同时又要确保其能源供应,变得如同走钢丝。让事情变得更加复杂的还有供需关系,这将影响消费价格和供给。展望未来,灵活性似乎是解决这一问题的关键。例如,利用太阳能和风能等各种能源;使用电池进行尖峰管理;在可用情况下使用核能;并根据需要务实地使用化石燃料资源等。有报道称,Meta正与乔治亚州的一家名为Silicon Ranch的太阳能开发商合作,帮助为其数据中心提供动力。 ... PC版: 手机版:

封面图片

科学家设计的新方案可以让碳捕集所需的能量将来自太阳

科学家设计的新方案可以让碳捕集所需的能量将来自太阳 在新工艺中,空气通过一种液体来捕捉二氧化碳。如果用光照射液体,温室气体就会再次释放并被收集起来。图片来源:苏黎世联邦理工学院因此,苏黎世联邦理工学院的研究人员正在开发一种利用光的新方法。通过这种方法,未来碳捕集所需的能量将来自太阳。在电化学能源系统教授玛丽亚-卢卡茨卡娅的领导下,科学家们正在利用这样一个事实:在酸性水液中,二氧化碳以二氧化碳的形式存在,但在碱性水液中,二氧化碳会反应生成碳酸盐,即碳酸盐。这种化学反应是可逆的。液体的酸性决定了它是含有二氧化碳还是碳酸盐。为了影响液体的酸性,研究人员在液体中加入了能对光产生反应的分子(称为光酸)。如果用光照射这种液体,这些分子就会使其呈酸性。而在黑暗中,它们又会恢复到原来的状态,使液体呈碱性。这就是 ETH 研究人员的方法的详细工作原理:研究人员在黑暗中将空气通过含有光酸的液体,从而从空气中分离出二氧化碳。由于这种液体呈碱性,二氧化碳会发生反应并形成碳酸盐。一旦液体中的盐分积累到一定程度,研究人员就用光照射液体。这使得液体呈酸性,碳酸盐转化为二氧化碳。二氧化碳从液体中冒出,就像在可乐瓶中一样,可以收集到储气罐中。当液体中几乎不剩任何二氧化碳时,研究人员关闭光源,循环重新开始,液体就可以捕获二氧化碳了。"然而,在实践中出现了一个问题:所使用的光酸在水中并不稳定。"卢卡茨卡娅研究小组的博士生、本研究的第一作者安娜-德弗里斯(Anna de Vries)说:"在最早的实验过程中,我们发现分子在一天后就会分解。"于是,卢卡茨卡娅、德弗里斯和他们的同事分析了分子的衰变。他们不是在水中,而是在水和有机溶剂的混合物中进行反应,从而解决了这个问题。科学家们通过实验室实验确定了两种液体的最佳比例,并通过巴黎索邦大学研究人员的模型计算解释了他们的发现。首先,这种混合物能让光酸分子在溶液中保持稳定近一个月。另一方面,它确保了光可以根据需要在酸性和碱性溶液之间来回切换。如果研究人员使用的有机溶剂不含水,反应将是不可逆的。其他碳捕获过程也是循环往复的。一种成熟的方法是使用过滤器在环境温度下收集二氧化碳分子。为了随后从过滤器中清除二氧化碳,必须将过滤器加热到约 100摄氏度。然而,加热和冷却都是高能耗的:它们占过滤器方法所需能源的大部分。Lukatskaya说:"相比之下,我们的工艺不需要任何加热或冷却,因此所需的能源要少得多。不仅如此,ETH 研究人员的新方法还可能仅靠阳光就能工作。我们系统的另一个有趣之处在于,我们可以在几秒钟内从碱性变为酸性,并在几分钟内恢复到碱性。这让我们可以比温度驱动系统更快地在碳捕获和碳释放之间切换。"通过这项研究,研究人员表明,光酸可以在实验室中用于捕获二氧化碳。下一步,他们将进一步提高光酸分子的稳定性,使其走向市场。他们还需要研究整个过程的参数,以进一步优化该过程。参考文献:《溶解调谐光酸作为二氧化碳捕获和释放的稳定光驱动 pH 开关》,作者:Anna de Vries、Kateryna Goloviznina、Manuel Reiter、Mathieu Salanne 和 Maria R. Lukatskaya,2023 年 12 月 20 日,《材料化学》。DOI: 10.1021/acs.chemmater.3c02435编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人