AigcPanel 一站式 AI 数字人系统,支持视频合成、对口型、声音合成与克隆、多模型导入、一键启动模型等,完全免费,适用于

AigcPanel 一站式 AI 数字人系统,支持视频合成、对口型、声音合成与克隆、多模型导入、一键启动模型等,完全免费,适用于 Windows、OSX、Linux 系统。 主页项目地址 #AI #数字人 #开源 资源公社:@ZYGS123 全网搜索群:@soso_Group

相关推荐

封面图片

【分享】无限分身克隆完全免费版极速双开无卡顿永久可用

【分享】无限分身克隆完全免费版极速双开无卡顿永久可用 【软件名称】无限分身克隆完全免费无广告 【软件版本】v1.0 【软件大小】10.3mb 【适用平台】安卓 【软件简介】无限应用分身app是一款免费的安卓应用,非常棒的分身APP,操作简单直接添加克隆安装即可,完全免费,简约,小巧,没有服务器,本地处理器分身,永久可用,谷歌版本多开分身! 【下载地址】链接: 高速下载不限速 备用链接:  提取码:fx9c 拿走吱一声禁止白嫖怪 拿走吱一声禁止白嫖怪

封面图片

Google发布了一个生成式AI学习路径,包括8门课和2个测试,从技术原理、实现方式到应用场景和开发部署都包括,完全免费。

Google发布了一个生成式AI学习路径,包括8门课和2个测试,从技术原理、实现方式到应用场景和开发部署都包括,完全免费。 1.:什么是生成式AI,有什么应用,和传统机器学习有什么不同。 2.:什么是大语言模型 (LLM),大语言模型的应用场景,以及提示词 (prompt) 和微调 (fine-tuning) 如何提升模型性能。 3. :什么是负责任的AI (Responsible AI),为什么AI模型安全可靠且道德很重要,以及如何打造一个使用负责任AI的产品。 4.:Diffusion Models图像生成模型理论、模型训练方法以及如何部署模型到云端 5. :机器翻译、语音识别等任务广泛应用的encoder-decoder 模型架构原理以及如何在TensorFlow中构建一个此架构的诗歌生成AI。 6. :神经网络中的注意力机制(Attention Mechanism)如何在计算能力有限的情况下将计算资源分配给更重要的任务,提高翻译、总结、问答等性能。 7. :自然语言处理中的预训练技术BERT(Bidirectional Encoder Representations from Transformers)的基础原理,以及其如何可以让AI在许多不同任务中的显著提升在上下文中理解无标记文本的能力。 8. :学习图像理解和标注,学习如何构建出一个看图说话理解图片的人工智能模型。

封面图片

【周鸿祎关于大模型的2023年100条语录】

【周鸿祎关于大模型的2023年100条语录】 1、2024大模型发展四大预测:大模型不会垄断,不会成为操作系统,将会无处不在。不像操作系统全世界就那么几套; 大模型一方面追求“大”,另一方面也会追求“小”,汽车上可能会部署出来更多的大模型; 多模态将成为国产大模型的标配;国内会出现很多垂直大模型,走进百行千业,向产业化方向发展。 2、不要高估大模型现在的能力,也不要低估大模型未来的潜力。 3、建立 AI 信仰:相信 Al是真 Al、相信Al是工业革命级技术、相信 AI将重塑所有业务、相信不拥抱AI的公司和个人都将被淘汰。 4、All in AI 要思考的三个问题:对上对下一一组织内部所有人是否都在用AI?对内一内部业务流程被改造会怎么样?对外一一产品和服务被AI加持会怎么样? 5、未来衡量公司前景要看“含 AI量”:业务中有多少环节被 AI 优化、被 AI 赋能、被AI改造。 6、我是做安全出身的,本来应该是最悲观的人,因为我们看到的往往都是技术带来的负面效应。但在大模型这件事上,我是坚定的发展派。 7、中国不发展大模型才是最大的不安全,虽仍存差距,中国大模型发展速度已是奇迹。 8、大模型不是风口和泡沫。即使是风口,也得吹五年到十年。对创业者来说,还有十年红利期。 9、场景红利是中国大模型弯道超车的关键,大模型真正的机会是结合场景发展垂直大模型。 10、大模型现在还很「高大上」,要把它拉下神坛,真正的走进千家万户,影响百行干业,这才是大模型引发工业革命的道路。 11、大模型的未来不会成为操作系统,而是会成为个人电脑,成为数字化系统的标配。 12、未来大模型在中国的发展之路:不会有垄断,不会只有3-5个大模型,大模型将无处不在。 13、开源就像是 AK47:价格便宜,火力足,分量够,能够实现「科技平权」。 14、大模型领域,巨头一定会用全家桶的思路,把自己的全家桶产品装上它们的大模型。用户会就近使用,所以存量市场在未来很难有大的改变。 15、80% 去中心化的企业级市场,蕴含着巨大的机会。 16、大模型能产生知识模糊、制造知识幻觉,可以看成创造力的展现。在此之前,世界上所有的动物只有人类会瞎编。 17、国家大战略是产业数字化。互联网企业要甘当配角,顺势而为,把数字化能力和大模型能力赋能传统企业,特别是制造业,帮助他们实现数字化、智能化。 18、行业大模型可能是一个幻觉。不会出现公有服务的行业大模型,但很多企业仍然会做私有的行业大模型。 19、垂直大模型是创业者的金光大道。 20、在企业里面做大模型,要忘掉 ChatGPT 这个榜样。 21、大模型的六个垂直的趋势:行业垂直化、企业垂直化、专业垂直化、小型垂直化、分布式垂直化、专有垂直化。 22、把大模型看低一点,就是企业业务系统的智能化的升级。企业业务系统分成很多垂直的部分,大模型也应该做到专业垂直。 23、企业里不一定需要GPT4 这样的全才、通才或者天才,而是需要有垂直领域经验和技能的人才,这就是垂直模型要干的事情。 24、(创业者)不要等到大模型无所不能才开始做,只要想清楚了产品应用的场景,现在就能做。 25、大模型创业要快速行动,first move,just do it。 26、大模型最常用的功能只有两个:知识问答、写作生成。应该先把大模型这两个功能找到各种细化的垂直场景应用。 27、大模型不是万能的,很多业务系统是不能被取代的。创业者千万不要介入旧系统的改造之中,陷入其中可能长期无法交付。 28、大模型要跟现有的系统做一定的隔离,尽量少发生 API,函数调用的联系。 29、人工智能应当作为副驾驶,不要让它来做出不可撤销的决定。 30、坚持 AI 普惠的原则,大模型发展要以人为本。 31、做大模型的创业,不要给企业宣扬有了这个东西就会裁员。 32、能用程序解决的问题千万不要用自然语言去解决问题。不要去迷信 LUI,未来 CUI、GUI将成为主流。 33、构建企业级大模型,应该遵循安全、向普、可信、可控。 34、永远让人在决策的回路上,而不能让大模型决策。 35、大模型技术的三大发展方向:机器人、自动驾驶、科学研究。 36、大模型是工业革命级别的技术创新,美国AIlin Al,正掀起一轮新的产业革命。 37、大模型企业级场景应用要炼就“九阳神功”一:私有化部署千亿通用大模型。二:AI生产力工具集。三:个性化定制数字员工。四:数据工厂、知识工厂、模型工厂。五:基础大模型。六:训练垂直模型。七:智能体工场。八:业务连接与协作平台。九:全面AI化。 38、做大模型要坚持长期主义,肩负起担当,保持理想主义。 39、绝大多数人这辈子的使命是用好 Al,而不是做Al。 40、数字人最重要的是能够有自己的人设,最后能够自主学习,能够连接外围系统。 41、未来的数字人不是简单的对口型的形象,也不是简单的念稿的机器,而是能够真正跟每个人进行对话、交流,进行帮助、讨论。 42、不是只有当老板才有助理。我们做人工智能,最重要的是让每个人都可以有一堆 AI 助理为自己所用。 43、每个企业员工都可以有自己的数字专家、数字助手。 44、数字永生这个概念离我们并不遇远,我们可能模拟出来一个伊隆,马斯克,一个爱因斯坦,一个周鸿祎,数字人模拟他们的说话口吻、思维方式、知识和积累,使得我们可以跟他们去交流。 45、数字人可以让我们换一种读书的方式,不是死读书,而是直接和书里的人产生交流。 46、人工智能不是新物种,是新工具。 47、怎么保证大模型不说错话,训练另外一个 大模型来训练这个大模型,这不是个笑话。 48、中国已经进入“百模大战”,各家做大模型基础能力都差不多,比拼的是谁对普通人来说更好用。 49、大模型发展 3个月,相当于历史上的技术发展30年。 50、大模型不会造成大规模失业,反而提升效率。 51、通用技术才能引发工业革命,像水电一样输送到办公E族。 52、大模型价值不仅仅在于使用量,在于未来把 AI能力通用化、泛化、垂直化。 53、未来在职场上,熟练掌握 AI 有时候要比职场经验更有优势。 54、大模型能让小白变成专家,能帮助一个普通的坏蛋写出出色的钓鱼软件,与此同时也能扮演“正义助手”。 55、我们不能把大模型当作黑盒子,了解工作原理,才能从根本上解决安全问题。 56、AI 进化应该以人为本,大模型应该成为人类的朋友和助手。 57、大模型不是玩具,不是搜索引擎、不是聊天机器人、这些都是它亲民推广的伪装,背后强大的超级大脑代表着超级人工智能时代的来临。 58、大模型出来前,所有自动驾驶都只是辅助驾驶。 59、只有有了多模态全面的能力,才预示着大模型真正地走上一个新的台阶。 60、谁真正通过大模型把人类的语言做了重新的编码、学习、训练,也就对人类掌握的知识有了一个重新的压缩和蒸馏。 61、GPT 的模型、算法、路线是已知的,但是出现很多现象 OpenAI 的人也没法解释,比如智力的突变,语言及逻辑的迁移,像是从猿到人的变化。 62、大模型帮我们解锁了很多原来只有专业人士才能解锁的技能,比如写代码、绘画,让有才华但缺乏专业训练的人也可以发挥自己才华。 63、超级人工智能不应该先解决娱乐问题,应该反向解决常温超导和可控核聚变问题,帮助人类实现能源自由。 64、搜索不会犯错,是因为搜索不智能,真正的人工智能一定会犯错,它的错误来自海量知识在推理过程中产生的突变。 65、在大模型面前,人类自认为独有的特质不存在了:想象力、创造力。 66、不必质疑大模型的创作是模仿和借鉴,人类写东西哪个不是模仿和借鉴呢? 67、我们老说眼见为实,耳听为虚。现在来看,未来互联网上大量的内容会不会都是AI生成的?所以希望大家正确地使用文生视频能力。 68、数字人是未来人工智能大模型对我们每个人和对每个企业来说最合适的入口。 69、未来,有不同人设,不同经历,不同角色的数字人可以在人工智能驱动下,一起来帮人们做脑力激荡,完成共同的目标。 70、未来数字人会继续迭代,调用大模型的能力。拥有大模型不具备的长期记忆力。同时,数字人可以有自己的目标、规划和分解能力,使得它可以不断地调用各种垂直的模型完成任务。 71、未来人工智能的发展不仅仅是大模型核心能力的增加,外部功能的包装,人工智能跟每个人的工作、生活贴得更近,每个人能更自如地使用人工智能。 72、大模型会一本正经胡说八道,恰是大模型真正智能的体现,也是最可怕的地方。因为人才会犯错误,才会胡编乱造,能描绘不存在的东西。 73、大模型的训练过程分成三层:知识铺垫、基于人工反馈的强化学习、价值观的校正纠偏,很像一个小孩从小到大学习的过程。 74、用人类聊天素材训练出来的机器人不只是“人工智障”,更是“人工杠精”。 75、任何行业的APP、软件、网站、应用,都值得用大模型的能力重塑一遍。搭不上这班车就会被淘汰。 76、大模型将作为“发电厂”把大数据加工成“水”和“电”,通过API接口以SaaS服务的方式输出给千行百业,全面提升人类社会智能化水平。 77、大模型可以极大地提高劳动生产率。用的人越多,教它的技能越多,它就能进入更多新的领域。 78、未来每个行业、每个公司、甚至每个人都会有自己的私有化的大模型。 79、OpenAI在ChatGPT的研发上做到了“四大一强”:大模型、大数据、大算力、大标注、强算法。 80、我们中国人的工程化能力很强,我们模仿能力也很强,后来居上也不是不可能。 81、一人捅破窗户纸,千军万马独木桥。从0到1难,但中国公司技术打磨很强。剩下就是时间,问题。 82、数据获取和清洗、人工知识训练和场景是大模型未来发展的三个关键。 83、“机器人造机器人”可能会从大模型具备写软件能力时开始。

封面图片

Deepfake假CFO骗走公司1.8个亿 员工:视频会议里每个人看起来都很真实啊

Deepfake假CFO骗走公司1.8个亿 员工:视频会议里每个人看起来都很真实啊 先别着急骂这大兄弟警惕性太低,Ta也不是没有过一丝丝怀疑,但是,这可不是什么诈骗界常见的一对一视频通话参与会议的有好几个熟面孔,无论是脸还是声音,当事人描述“每个人看起来都很真实啊”。甭管怎么说,这事儿的惊悚程度,是有点吓到网友们了。借由AI技术犯罪的话题,一时间又成为了各大平台的讨论焦点。冲锋在AI批评一线的马库斯就第一时间拉着网友们吃起了瓜:好家伙,这是《黑镜》降临了。深度伪造的狗屎越来越真实了。事件始末我们暂且称这位被骗的财务人员为“小帅”,事情的具体经过是这样婶儿的……最初,小帅收到了一封远在英国总部的“CFO”发来的邮件。由于内容提到需要执行一项秘密交易,小帅一开始有些疑虑,并怀疑这是网络钓鱼信息。不想,骗子立马展开下一步动作,邀请小帅进行视频会议。小帅进入视频会议后彻底被眼前的一幕唬住了:不仅公司CFO在,小帅的一些同事也在,还有一些外部人员。关键是,这些假同事和小帅认识的真同事无论是模样长相还是声音,都别无二致。会议中,这个假冒CFO还让小帅做自我介绍,不过在此过程中会议突然中断。骗子随后又通过即时通讯平台、电邮、一对一视频通话与小帅保持联系。如此接连下套,小帅最终中了骗子的诡计,按照会议中的指示,分别向5个香港银行账户进行了15次转账,总计2亿港元,也就是约2560万美元,约合RMB1.8个亿。从骗子联系小帅开始,整个事件大概持续了一个周,直到小帅之后向公司总部核实情况,才惊觉整个事件不过是一场精心策划的诈骗。之后他们报了警。警方立即展开调查,发现会议中除小帅外的所有参与者,都是骗子使用公开的个人视频和音频片段重建的数字人。视频中让小帅自我介绍并不是真的在和他互动,而只是单纯的用虚拟形象下达指令。警方还透露,不法分子曾使用相同的多人视频通话策略,试图诈骗该公司分部的另外一名员工,总共接触了两到三名员工。但警方未提供有关他们遭遇的完整信息。目前该案还在进一步调查中,尚未对诈骗者实施逮捕。后续在新闻发布会上,香港警方表示已逮捕6名与此类诈骗有关的人员,且类似案件还有很多:去年7-9月,有8张被盗的香港身份证被用于申请了90份贷款、登记了54个银行账户;至少有20次,AI Deepfake被用来模仿身份证上的人像,以骗过面部识别程序。AI“克隆”有多猛可以看到,整个案件中,最终让小帅放下戒备的一大关键点就在于视频会议中的假人过于真实。那么现在的“数字克隆人”究竟能有多真?一起来看几个栗子。就比如下面这段霉霉说中文的视频就来自一款爆火AI工具HeyGen。音色口型简直完美复刻,网友看了之后都吓得直喊妈:HeyGen的最新技术展示中,和数字克隆人实时聊天也已成为现实。AI语音合成方面,最近比较火的是一家叫做11Labs(ElevenLabs)的初创公司。11Labs不仅能实现29个语种的语音生成,而且仅需短至1分钟的音频素材,就能很好地“克隆”任何一个人的声音,语调、情绪变化都能模仿到位的那种。关键是,现如今这些AI克隆术不仅真实度越拉越满,门槛也在逐渐降低……比如下面这种开源项目,已经可以分分钟实现实时视频换脸。项目主页列有不少现成的不同人的面部模型,如果不喜欢还可以自己训练模型。“数字克隆版的你即将到来”或许是受到这一事件和前段时间霉霉成Deepfake受害者事件的影响,上述这个实时换脸项目再获关注,还新鲜冲上了GitHub趋势榜。就在这个项目的issues中,不少网友的抵触情绪早已弥漫多时。但正如许多网友提到的那样,技术没有善恶之分。并且更现实的问题在于,开弓没有回头箭。于是很多人把关注的重点,放到了“如何防御”这件事上。除了更多规范和政策的制定,从技术的角度来说,Nature就在“2024最值得关注的七项技术”一文中提到:让开发者在AI工具中加入隐形水印机制或许是一种方案。而从个人的角度来说,提高警惕,已经成为AIGC技术爆发时代不得不面对的命题。香港警方也在这次事件中表示,将扩大警报系统,以提前警告、阻止用户向诈骗相关账户转移资金。不过,Deepfake假CFO骗走公司1.8个亿这种事儿,多少还是有点过于离谱。以致于不少网友提出了质疑:这么大一个公司,就没点风险管理措施?怕不是有内鬼吧。那么,你怎么看? ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人