#科学家 发明原子级“透视镜” #半导体 缺陷无所遁形

None

相关推荐

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术 横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于 3 月 19 日发表在《应用物理通讯》(Applied Physics Letters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者 Satoshi Kusaba 说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在 TMD 材料中诱导相干声子这一基本问题。"WSe2 中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:Satoshi Kusaba / 横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2 的 TMD 薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-Wei Lin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制 TMD 的电子状态打开大门,这对于开发谷电技术和使用 TMD 的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

华人科学家发现迄今为止“最佳半导体材料” #抽屉IT

封面图片

科学家开发出制造有机半导体的新型可持续方法

科学家开发出制造有机半导体的新型可持续方法 林雪平大学的研究引入了一种使用水等良性溶剂加工共轭聚合物的新方法。新油墨还具有高度导电性。资料来源:Thor Balkhed作为传统硅基电子器件的补充,有时甚至是替代品,有机电子器件正在崛起。有机电子产品具有制造简单、灵活性高、重量轻等特点,同时还具有传统半导体的电气特性,因此可用于数字显示、能源存储、太阳能电池、传感器和软植入物等应用。有机电子器件由半导体塑料(即共轭聚合物)制成。然而,加工共轭聚合物通常需要使用对环境有害、有毒和易燃的溶剂。这是有机电子产品广泛商业化和可持续使用的主要障碍。现在,林雪平大学的研究人员开发出了一种新的可持续方法,可以从水中加工这些聚合物。这种新型油墨不仅更具可持续性,还具有高度导电性。刘铁峰,有机电子学实验室博士后。资料来源:Thor Balkhed"我们的研究引入了一种利用水等良性溶剂加工共轭聚合物的新方法。"有机电子实验室资深副教授西蒙娜-法比亚诺(Simone Fabiano)说:"利用这种被称为地态电子转移的方法,我们不仅可以解决使用有害化学物质的问题,还能证明材料性能和设备性能的改善。"当研究人员将这种新型导电墨水作为有机太阳能电池的传输层进行测试时,发现其稳定性和效率均高于传统材料。他们还测试了用这种油墨制造电化学晶体管和人工神经元的情况,结果表明其工作频率与生物神经元相似。"我相信,这些成果将对有机电子领域产生变革性影响。通过利用水等绿色和可持续溶剂加工有机半导体,我们可以大规模生产对环境影响最小的电子设备,"瓦伦贝格学院研究员西蒙娜-法比亚诺(Simone Fabiano)说。编译自/scitechdaily ... PC版: 手机版:

封面图片

瑞士科学家发明新型"可可果冻"巧克力

瑞士科学家发明新型"可可果冻"巧克力 当然,在巧克力中加入糖意味着巧克力并不是一种特别健康的零食,而且环境和经济问题也意味着我们可能会面临全球性的可可短缺。苏黎世联邦理工学院(ETH Zurich)研究人员的一种新巧克力配方有可能解决这些问题。关键是要从可可豆荚中使用更多通常被丢弃的材料,包括更多的果肉以及被称为内果皮的外壳内层。可可果冻"甜度极高,可以替代大多数巧克力配方中的糖粉。与传统黑巧克力相比,新型可可果实巧克力的制作示意图找到合适的浓度需要反复试验。可可果冻用量过多会使巧克力结块,用量过少又会使巧克力不够甜。最终,研究小组确定了一种可可果冻含量高达 20% 的配方,根据训练有素的专家小组进行的盲品测试,这种配方的甜度与现有黑巧克力的甜度相似。与普通欧洲黑巧克力相比,这种巧克力的纤维含量增加了 20%,饱和脂肪含量减少了 30%。这可能会让巧克力不再是一种罪恶的享受,尤其是它可以帮助可可种植者从他们的作物中获得更多收入。研究报告的主要作者金-米什拉说:"这意味着农民不仅可以出售豆子,还可以从果肉和内果皮中榨取汁液,磨成粉末后出售。这将使他们从三个价值创造流中获得收入。为可可果实创造更多价值使其更具可持续性"。"不过,在可可果冻巧克力进入超市货架之前,还需要改变基础设施。例如,可可种植者需要设备来烘干制作果冻的原料,而巧克力生产商则需要能够将其纳入工作流程。尽管如此,看到大家最喜欢的点心可以有新的改进方式,还是很吸引人的。这项研究发表在《自然-食品》杂志上。 ... PC版: 手机版:

封面图片

中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构 北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产 qPlus 型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下 153 摄氏度即开始融化的奥秘。该成果 22 日晚发表于国际学术期刊《》上。 冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。 据介绍,团队利用 qPlus 型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。 轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下 153 摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

科学家发现光合作用的原子级秘密

科学家发现光合作用的原子级秘密 了解光合蛋白质的生产论文的共同作者、研究小组组长迈克尔-韦伯斯特(Michael Webster)博士说:"叶绿体基因的转录是制造光合蛋白的基本步骤,光合蛋白为植物提供生长所需的能量。我们希望通过更好地了解这一过程在详细的分子水平上能够帮助研究人员开发出光合作用更强的植物。这项工作最重要的成果是创建了一个有用的资源。研究人员可以下载我们的叶绿体聚合酶原子模型,并利用它提出自己关于叶绿体聚合酶如何发挥作用的假设,以及检验这些假设的实验策略。"光合作用是在叶绿体内进行的,叶绿体是植物细胞内的一个小区块,它含有自己的基因组,反映了叶绿体在被植物吞噬和合并之前曾是自由生活的光合细菌。看到植物叶绿体中转录光合基因的聚合酶分子。用电子显微镜收集到的单个分子图像经过分类和排列,揭示了蛋白质复合体结构架构的细节。资料来源:迈克尔-韦伯斯特和伊斯卡-普拉马尼克约翰-英纳斯中心的韦伯斯特小组研究植物如何制造光合蛋白,光合蛋白是实现这一优雅化学反应的分子机器,它将大气中的二氧化碳和水转化为单糖,并产生氧气作为副产品。蛋白质生产的第一阶段是转录,通过读取基因产生"信使RNA"。转录过程由一种名为 RNA 聚合酶的酶完成。叶绿体 RNA 聚合酶的复杂性50 年前,人们发现叶绿体中含有自己独特的 RNA 聚合酶。从那时起,科学家们就对这种酶的复杂程度感到惊讶。它比它的祖先细菌 RNA 聚合酶有更多的亚基,甚至比人类的 RNA 聚合酶还要大。韦伯斯特小组希望了解为什么叶绿体具有如此复杂的 RNA 聚合酶。为此,他们需要对叶绿体 RNA 聚合酶的结构构造进行可视化。研究小组使用一种称为低温电子显微镜(cryo-EM)的方法,对从白芥子植物中纯化的叶绿体RNA聚合酶样本进行成像。原子级分析的启示通过处理这些图像,他们建立了一个包含分子复合体中 5 万多个原子位置的模型。RNA 聚合酶复合体由 21 个亚基组成,分别在核基因组和叶绿体基因组中编码。研究人员对这一结构进行了仔细分析,从而开始解释这些元件的功能。这个模型让他们确定了一种蛋白质,它能在DNA转录过程中与DNA相互作用,并引导DNA进入酶的活性位点。另一种成分可以与正在产生的 mRNA 相互作用,从而在 mRNA 转化为蛋白质之前保护它不被蛋白质降解。韦伯斯特博士说:"我们知道叶绿体 RNA 聚合酶的每一个组成部分都起着至关重要的作用,因为缺少其中任何一个组成部分的植物都不能制造光合蛋白质,因此也就不能变绿。我们正在仔细研究原子模型,以确定装配的 21 个组件中每个组件的作用。"第一作者Ángel Vergara-Cruces博士说:"现在我们有了一个结构模型,下一步就是确认叶绿体转录蛋白的作用。通过揭示叶绿体转录的机制,我们的研究有助于深入了解叶绿体在植物生长、适应和应对环境条件中的作用。"共同第一作者伊斯卡-普拉马尼克(Ishika Pramanick)博士说:"从极具挑战性的蛋白质纯化开始,到为这一巨大复杂的蛋白质拍摄令人惊叹的低温电子显微镜图像,再到最终看到我们的工作成果的印刷版本,在这一非凡的工作历程中有许多令人惊喜的时刻。"韦伯斯特博士总结道:"高温、干旱和盐度限制了植物进行光合作用的能力。面对环境压力仍能可靠地生产光合蛋白的植物可能会以不同的方式控制叶绿体转录。我们期待看到我们的研究成果被用于开发更强健作物的重要工作中。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人