丰田旗下日本电装开发新型功率半导体器件:功耗降低 20%,可用于电动汽车 #抽屉IT

None

相关推荐

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

【资料】半导体器件建模仿真与分析教程|

封面图片

懒小木 - 半导体器件建模仿真与分析教程

懒小木 - 半导体器件建模仿真与分析教程 描述:半导体器件的建模和分析是器件设计的核心环节,熟练掌握器件的建模与分析方法,能够帮助我们更好地开展器件设计和分析工作,提高设计效率,缩短研发周期。 链接: 大小:NG 标签:#学习 #知识 #课程 #资源 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

封面图片

懒小木 - 半导体器件建模仿真与分析教程

懒小木 - 半导体器件建模仿真与分析教程 描述:半导体器件的建模和分析是器件设计的核心环节,熟练掌握器件的建模与分析方法,能够帮助我们更好地开展器件设计和分析工作,提高设计效率,缩短研发周期。 链接:https://www.alipan.com/s/8ZYT3fD3ZKV 大小:NG 标签:#学习 #知识 #课程 #资源 来自:雷锋 版权:版权反馈/DMCA 频道:@shareAliyun 群组:@aliyundriveShare 投稿:@aliyun_share_bot

封面图片

资源懒小木 - 半导体器件建模仿真与分析教程

资源懒小木 - 半导体器件建模仿真与分析教程 资源简介:半导体器件的建模和分析是器件设计的核心环节,熟练掌握器件的建模与分析方法,能够帮助我们更好地开展器件设计和分析工作,提高设计效率,缩短研发周期。 链接:点击获取 关键词:#学习 #知识 #课程 #资源 频道:@yunpanpan 投稿:@zaihuaboxbot 搜索:@yppshare

封面图片

日本开发在磁场下实现电阻开关效应的半导体器件

日本开发在磁场下实现电阻开关效应的半导体器件 日本一个研究团队研制出一种半导体纳米通道器件,给这种器件施加磁场能使其电阻值发生高达250倍的变化。这种现象未来有望用于开发新型电子元器件等。相关论文已发表在国际学术期刊《先进材料》上。 新华社报道,日本东京大学近日发布公报说,该校研究人员领衔的团队研制出一种通道长20纳米的锗半导体纳米通道器件,它属于半导体两端器件,拥有铁和氧化镁双层结构的电极,还添加了硼元素。研究人员观察到,通过给这种器件施加磁场能使其表现出电阻开关效应,外加磁场还使其实现了高达250倍的电阻变化率。研究人员给这种现象取名为“巨磁阻开关效应”。 公报说,目前仅能在20开尔文(约零下253摄氏度)的低温环境下观测到这种“巨磁阻开关效应”。研究团队下一步将致力于提高“巨磁阻开关效应”出现的温度,以便将其用于开发新型电子元器件等。 电阻开关效应一般指,材料能够在外电场作用下在低电阻态和高电阻态之间可逆转换。基于电阻开关效应的电阻式随机存取存储器被视为最有竞争力的下一代非易失性存储器之一。 传统的动态随机存取存储器是利用电容储存电荷多少来存储数据,一大缺点是数据的易失性,电源意外切断时会丢失存储数据。而电阻式随机存取存储器是通过向器件施加脉冲电压产生电阻高低变化,以此表示二进制中的“0”和“1”,其存储数据不会因意外断电而丢失,是一种处于开发阶段的下一代内存技术。 论文第一作者、东京大学研究生院工学系研究科教授大矢忍接受新华社邮件采访时说,目前已有很多关于电阻开关效应的研究,但此前对电阻开关效应的“磁场依存性”关注较少。新成果将来有望在电子领域得到应用,特别是用于神经形态计算以及开发下一代存储器、超高灵敏度传感器等新型器件。 2024年4月5日 1:53 PM

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人