Nature发布2024年值得关注的七大技术 中国科学家成果首次入选

Nature发布2024年值得关注的七大技术 中国科学家成果首次入选 值得一提的是,高彩霞团队开发的大片段DNA精准定点插入新工具PrimeRoot入选,这也是自2018年首次评选以来,第一项来自中国学者的技术成果入选。大片段DNA插入2023年12月,美国FDA批准了首个基于CRISPR-Cas9的基因编辑疗法上市,用于治疗镰状细胞病,几天前,FDA进一步批准了该疗法用于治疗输血依赖性β-地中海贫血。这是基因编辑在临床应用中的重大胜利。CRISPR-Cas9及相关基因编辑技术通过使用Cas9等核酸酶切割DNA双链实现对基因的敲除或引入小的序列变化,其很难实现精确的可编程的大片段DNA序列的插入。而最近的一些研究成果,让科学家们能够替换或插入大片段DNA。2023年4月,中国科学院遗传与发育生物学研究所高彩霞团队在 Nature Biotechnolgy 期刊发表了题为:Precise integration of large DNA sequences in plant genomes using PrimeRoot editors 的研究论文。该研究将团队之前开发的ePPE(Engineered Plant Prime Editor)与刘如谦团队开发的epegRNA(Engineered pegRNA)结合,在植物细胞内建立了dual-ePPE系统,实现了最高效率可达50%以上的短片段DNA的精准定点插入。然后将dual-ePPE与筛选出的高效的酪氨酸家族位点特异性重组酶Cre相结合,开发了能够实现大片段DNA精准插入的PrimeRoot系统。该系统在水稻和玉米中能够实现一步法大片段DNA的精准定点插入,效率可达6%,成功插入的片段长度最长达11.1kb,且插入完全精准可预测,在编辑效率和精准性上具有显著优势。高彩霞研究员,照片来源:Stefen Chow高彩霞研究员表示,PrimeRoot系统高效、精准插入大片段DNA的能力,可通过基因敲入广泛用于赋予作物对疾病和病原体的抗性,从而继续推动基于CRISPR的植物基因组工程的创新浪潮。相信这项新技术可以应用于任何植物物种。2022年11月,麻省理工学院的 Omar Abudayyeh、Jonathan Gootenberg 团队在 Nature Biotechnology 期刊发表了题为:Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases 的研究论文。该研究将来自噬菌体的丝氨酸整合酶与Cas9切口酶(只切断DNA一条链,而不造成DNA双链断裂)结合,开发了一种名为PASTE的新型基因编辑技术。PASTE在gRNA的引导下切割特定基因组位点,此时Cas9切口酶融合的逆转录酶将整合酶所需的附着位点序列整合进切割位点。通过这种方式,就可以将整合酶所需的附着位点插入基因组中的任何位置,而且这种插入不引起DNA双链断裂,此时,整合酶就可以与附着位点结合,将大片段DNA序列插入。该技术能够以更安全、更有效的方式替换突变基因,还可向哺乳动物及人类细胞中定点插入长达36kb的超长DNA片段。2022年2月,斯坦福大学丛乐团队在 Nature Cell Biology 期刊发表了题为:dCas9-based gene editing for cleavage-free genomic knock-in of long sequences 的研究论文。该研究将来自噬菌体的DNA精确重组酶单链退火蛋白(SSAP),与DNA切割活性丧失的dCas9系统结合,开发出了一种新型基因编辑工具dCas9-SSAP,可在不产生DNA双链断裂的情况下,实现长达2kb的大片段DNA的高效、精准定点插入。丛乐认为,对于体内基因编辑而言,PASTE尺寸太大,需要三个独立的AAV病毒载体毒才能递送,因此,其编辑效率可能不如尺寸更小的dCas9-SSAP。深度学习用于蛋白质设计20年前,华盛顿大学的 David Baker 等人在Science 期刊发表论文【2】,取得了一项里程碑式成就:他们使用计算工具从头设计了一个全新蛋白质Top7,该蛋白由93个氨基酸残疾组成,能够如预期般折叠,且非常稳定,但它没有任何有意义的生物学功能。David Baker教授而现在,在 David Baker 等人的努力下,从头设计蛋白质已经一种成熟的工具,用于生成定制酶,及其他基于蛋白质的药物、疫苗和药物递送载体。这种进步的大部分归因于越来越多的将蛋白质序列与其结构联系起来的数据库,但人工智能的技术进步也同样重要。例如,2023年2月,David Baker 团队在 Nature 期刊发表论文,从头设计了人造荧光素酶,这也是科学界首次基于深度学习的人工智能来创造自然界不存在的酶。2023年4月,David Baker 团队在 Science 期刊发表论文,利用基于强化学习的人工智能从头设计了全新且有功能的蛋白纳米颗粒,为疫苗和药物递送载体开发开辟了全新道路。2023年12月,David Baker 团队在 Nature 期刊发表论文,利用基于深度学习的人工智能从头设计了具有高亲和力和特异性的全新蛋白质,这为抗体设计和疾病诊断打开了新思路。脑机接口2012年,Pat Bennett 被诊断出患上了渐冻症(ALS),而且她的情况比较特殊,她的脑干更早开始恶化,她在还能行走、打字的时候,就已经无法使用嘴唇、舌头、喉部和下颚的肌肉运动来清晰地发声,她的大脑能够尝试发声,但肌肉已无法执行这一命令,从而失去了说话的能力。2022年3月,她参加了斯坦福大学 Francis Willett 教授领导的脑机接口临床试验,研究团队在她的 大脑皮层表面植入了四个微型 细电极阵列(每个阵列包含8×8个电极),用于收集单个细胞的神经活动,植入的阵列连接到金线上并通过电缆连接到电脑上,并训练人工智能(AI)来解码她试图进行的发声。Pat Bennett 在进行测试2023年8月,Francis Willett 团队将这项研究以:A high-performance speech neuroprosthesis 为题,发表在了 Nature 期刊。该论文显示,通过植入皮质内脑机接口(iBCI),并通过训练人工智能(AI)软件,能够将渐冻症(ALS)患者 Pat Bennett 大脑中的神经活动实时转化为文字,转化速度可达每分钟62个单词,总词汇量高达125000,相比已有的脑机接口速度更快、准确性更高、词汇覆盖率更大。 这项研究展示了一条可行的路径以恢复渐冻症等瘫痪者的语言沟通能力。Nature 同期还发表了来自 加州大学旧金山分校的张复伦(Edward Chang)团队题为:A high-performance neuroprosthesis for speech decoding and avatar control 的研究论文 。该研究开发了一种新型脑机接口(BCI) ,结合人工智能(AI)技术,可以高性能、实时将因脑干中风而严重瘫痪的患者大脑信号同时转化为三种输出形式: 文字 、语音和 控制一个头像 ,从而帮助严重瘫痪者恢复沟通能力。这些脑机接口装置的开发成功应用,代表了神经科学和神经工程学研究的重大进步,对于缓解因瘫痪性神经损伤和疾病而失声的人的痛苦有巨大潜力。细胞图谱Wellcome Sanger研究所的 Sarah Teichmann 和现任基因泰克公司的研究和早期开发负责人 Aviv Regev 于2016年发起了一项规模庞大、雄心勃勃的人类细胞图谱 (Human Cell Atlas,HCA) 计划。该计划有近100个国家的约3000名科学家参与,而HCA本身也是一个更广泛的细胞和分子图谱交叉生态系统的一部分,包括人类生物分子图谱计划(HuBMAP)和脑计划(BICCN)。去年,已有数十项研究展示了使用这些技术生成器官特异性图谱的进展。2023年,Nature 发布了一个论文集,重点介绍了HuBMAP的进展,Science 则发布了一篇论文集,详细介绍了BICCN的工作。人类肺部的细胞图谱描述了不同的细胞类型及其调节方式Sarah Teichmann 表示,还有相当多的工作要做,估计至少需要五年时间才能完成HCA计划。但当该计划完成时,产生的人类细胞图谱将是无价之宝。例如可以使用细胞图谱数据来指导组织和细胞特异性药物开发,还有助于了解癌症等复杂疾病的风险和病因。超高分辨率显微成像Stefan Hell 、Eric Betzig和William Moerner因打破限制光显微镜空间分辨率的“衍射极限”而获得2014年诺贝尔化学奖,... PC版: 手机版:

相关推荐

封面图片

《自然》发布2024年值得关注的七大技术 中国科学家成果首次入选

《自然》发布2024年值得关注的七大技术 中国科学家成果首次入选 大片段DNA插入美国斯坦福大学正在探索单链退火蛋白(SSAP),其能将拥有2000个碱基的DNA精准嵌入人类基因组。其他方法利用基于CRISPR的先导编辑技术,将大片段DNA精确地嵌入基因组中。2022年,麻省理工学院研究人员首次描述了通过位点特异性靶向元件(PASTE)进行可编程添加,精确嵌入多达36000个碱基的DNA。中国科学院遗传发育所研究员高彩霞领导的团队开发了PrimeRoot。这种使用先导编辑的方法能在水稻和小麦中嵌入多达2万个碱基的DNA。这项技术可赋予作物抗病性和病原体抗性,延续基于CRISPR的植物基因组工程的创新浪潮。深度学习助力蛋白质设计从头设计蛋白质已经成熟为一种实用的工具,用于生成定制的酶和其他蛋白质。在这背后,深度学习功不可没。其中,“基于序列”的算法使用大型语言模型,能够像处理包含多肽“单词”的文档一样,通过处理蛋白质序列辨别出真实蛋白质结构背后的模式。例如西班牙巴塞罗那分子生物学研究所开发的ZymCTRL,能利用序列和功能数据设计出天然酶。基于结构的算法也不遑多让。美国华盛顿大学研究团队使用RFdiffusion设计的新蛋白质可与目标表面“完美吻合”,而更新版本的RFdiffusion能使设计者计算蛋白质的形状,为编码酶、转录调节剂、制造功能性生物材料等开辟了新途径。DeepFake检测生成式AI可在几秒钟内凭空创造出有说服力的文本和图像,包括所谓的“深度伪造”内容。一种解决方案是生成式AI开发人员在模型输出中嵌入水印,其他策略侧重于对内容本身进行鉴定,通过算法识别替换特征边界处的伪影等。在工具的可获得性方面,美国国防部高级研究计划局的语义取证(SemaFor)计划开发了一个有用的“深度伪造”分析工具箱。美国水牛城大学研究团队也开发了算法库DeepFake-O-Meter,其能从不同角度分析视频内容,找出“深度伪造”内容。脑机接口美国斯坦福大学科学家开发出一种复杂的脑机接口设备。他们在肌萎缩性侧索硬化症患者的大脑中植入电极,然后训练深度学习算法。经过几周训练,患者每分钟能说出62个单词。过去几年开展的多项此类研究,证明了脑机接口技术可帮助患有严重神经损伤的人恢复失去的技能,并实现更大的独立性,包括深度学习在内的AI技术在其中发挥了重要作用。加州大学旧金山分校研究团队研制出一款脑机接口神经假体,能让因中风而无法说话的人以每分钟78个单词的速度交流。匹兹堡大学研究团队将电极植入一名四肢瘫痪者的运动和体感皮层,以提供对机械臂的快速、精确控制以及触觉反馈。脑机接口公司Synchron也在进行实验,以测试一种允许瘫痪者控制计算机的系统。超高分辨率显微成像科学家正在努力缩小超分辨率显微镜与结构生物学技术之间的差距。这些新方法能以原子级分辨率重建蛋白质结构。2022年,德国科学家借助名为MINSTED的方法,使用专用光学显微镜,能以2.3埃(约1/4纳米)的精度解析单个荧光标记。较新的方法则使用传统显微镜来提供类似的分辨率。2023年,马克斯·普朗克生物化学研究所(MPIB)开发的序列成像(RESI)方法可分辨DNA链上的单个碱基对,用标准荧光显微镜展示了埃米级分辨率;德国哥廷根大学开发出“一步纳米级扩展”(ONE)显微镜方法,可直接成像单个蛋白质和多蛋白复合物的精细结构。全组织细胞图谱各项细胞图谱计划正取得进展,其中最引人注目的是人类细胞图谱(HCA)。HCA包括人类生物分子图谱(HuBMAP)、细胞普查网络(BICCN)以及艾伦脑细胞图谱。去年,数十项研究结果纷纷出炉。6月,HCA发布了对人类肺部49个数据集的综合分析。《自然》杂志发布文章介绍了HuBMAP的进展,《科学》杂志也发布了详细介绍BICCN工作的文章。不过,HCA至少还要5年才能完成。届时,其将为人类带来巨大利益,科学家可使用图谱数据来指导组织和细胞特异性药物的研发。3D打印纳米材料科学家目前主要借助激光诱导光敏材料的“光聚合”来制造纳米材料,但这项技术也面临这一些亟待解决的障碍,如打印速度、材料限制等。在提升速度方面,2019年,香港中文大学研究团队证明,使用2D光片而非传统脉冲激光器来加速聚合,可将制造速率提高1000倍。并非所有材料都可通过光聚合直接打印。2022年,加州理工学院团队找到了巧妙的解决方法:将光聚合水凝胶作为微尺度模板,然后将其注入金属盐并进行处理。这一方法有望利用坚固、高熔点的金属和合金制造出功能性纳米结构。 ... PC版: 手机版:

封面图片

中国科学家实现以RNA为媒介的基因精准写入

中国科学家实现以RNA为媒介的基因精准写入 以CRISPR基因编辑技术为代表的技术进步实现了基因组单碱基和短序列尺度的精准编辑,基本解决了基因组精准编辑的挑战。然而,如何针对应用场景的需求,实现大片段DNA在基因组的高效精准整合,仍然是整个基因工程领域亟需突破的难题。该技术的突破意味着可以通过外源功能基因的精准写入,来干预多种不同位点基因突变导致的单基因遗传缺陷等疾病,从而开发更为通用的基因与细胞疗法,具有广泛的应用前景。针对这一重大技术挑战,多种基因写入技术已被开发,如CRISPR核酸酶介导的同源重组或非同源末端连接技术等,但是这些技术都依赖于DNA模板作为基因写入的供体(donor)。在实际医学应用中,DNA供体面临免疫原性高、在体(in vivo)递送困难、在基因组中具有随机整合风险等诸多挑战。相比之下,RNA供体具有免疫原性低、可被非病毒载体(例如LNP)有效递送、在细胞内迅速降解,无随机整合风险等特点,能有效应对DNA供体所面临的挑战。因此,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。然而,现有以RNA为供体的技术,要么无法实现>200 bp的DNA片段高效整合(如引导编辑等),要么依靠基因组随机整合从而带来基因组随机突变风险(如逆转录病毒等)。是否能够以RNA作为供体,实现功能基因尺度的大片段DNA基因组精准定点整合?仍然是基因工程领域面临的挑战。2024年7月8日,Cell杂志以长文形式在线发表了中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成的题为All-RNA-mediated Targeted Gene Integration in Mammalian Cells with Rationally Engineered R2 Retrotransposons的研究论文。该研究结合基因组数据挖掘和大分子工程改造等手段,开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因(>1.5 kb)高效精准的整合,最高效率超过60%,成功实现了全RNA介导的功能基因(DNA)在多种哺乳动物基因组的精准写入,为新一代创新基因疗法的发展提供了基础。作为基因组进化的源动力之一,转座子可以通过在不同基因组间的"跳跃",实现自我的复制与扩增。其中,以RNA作为媒介的R2逆转座子的"跳跃"机制与以RNA作为供体的基因写入工具的开发思路不谋而合。同时,该类逆转座子天然倾向于整合在真核生物固定的28S rDNA基因组位点,这一位点在人基因组中拷贝数目多(约219个),且远离蛋白编码基因,是适合于外源基因整合的安全港位点("safe harbor"loci)。因此,R2逆转座子是以RNA为供体的大片段基因写入工具开发的有力的候选者。然而,尽管R2逆转座子早在上世纪80年代就被发现,其在哺乳动物细胞中的功能性质尚未被系统性地探索,迄今为止,未能被利用来在哺乳动物细胞中实现大片段功能基因的有效整合。在本研究中,研究团队首先通过数据挖掘,全面系统地分析了自然界中R2逆转座子元件的生物多样性;通过构建基于RNA供体的基因写入的报告体系,成功筛选出在哺乳动物细胞中具有完整GFP功能基因整合活性的R2Tg系统(来源于一种鸟Taeniopygia guttata 的基因组)。随后,研究团队针对R2Tg系统发挥功能所必需的两个关键组分:R2蛋白质以及供体RNA,进行了系统性的功能探索与工程化改造,最终获得了在人细胞系中基因整合效率超过20%的en-R2Tg工具。系统的工程化改造获得en-R2Tg工具由于R2蛋白质可以通过mRNA表达,且供体RNA本身也是RNA,那么,en-R2Tg工具能否以全RNA形式介导的基因的高效精准写入?为了探究这一点,研究人员通过体外合成获得了编码R2蛋白质mRNA以及供体RNA,并使用脂质体递送的方式将两条mRNA导入人的细胞中。结果显示,en-R2Tg工具能够高效整合多个与疾病治疗相关基因,且这些基因能够有效表达功能蛋白。能够以全RNA的形式发挥功能,意味着en-R2Tg工具可以使用安全性已经在临床上得到证明的LNP纳米材料来进行递送,这将有可能解决长久以来基因写入工具依赖病毒载体进行高效递送的难题。研究团队发现,使用LNP递送en-R2Tg工具在人的肝脏细胞系中能够实现25%的基因整合效率。此外,研究团队还证明R2工具在人类原代细胞中同样具有活性;同时,通过显微注射将en-R2Tg工具导入小鼠胚胎,成功实现了超过60%的GFP基因定点整合效率。本研究的另一关键点在于,工程化改造的en-R2Tg工具是否还保留有天然R2逆转座子的28S rDNA位点特异性整合这一性质?为了回答这一问题,研究人员结合无偏好的基因整合富集高通量测序以及全基因组三代测序方法,发现en-R2Tg工具在全基因组范围内展现了极高的基因整合特异性,大于99%的外源基因都精准整合到28S rDNA安全港位点。同时,结合qRT-PCR以及RNA-Seq实验,研究人员发现en-R2Tg工具对细胞的转录组状态几乎没有影响。这说明 en-R2Tg 介导的基因写入是位点精准特异的,可以有效避免逆转录病毒等技术所产生的基因随机整合导致的基因突变风险。综上,该研究基于自然界存在的R2逆转座系统,结合数据分析和工程化改造方法,成功开发了全RNA介导的、高效精准的基因写入技术,首次在多种人和小鼠细胞系及原代细胞中实现了功能基因的定点整合。R2基因精准写入工具在递送和安全性方面具有显著优势,未来有望基于此工具开发在体功能基因回补写入以及在体生成CAR-T细胞等全新的疾病治疗方法。值得注意的是,R2基因写入技术目前无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。开发全RNA介导的、高效精准的哺乳动物细胞大片段功能基因写入工具该研究由中国科学院动物研究所与北京干细胞与再生医学研究院合作完成,中国科学院动物研究所博士后陈阳灿、博士生骆胜球、博士后胡艳萍、博士生毛邦炜、王鑫阁与卢宗宝为本研究共同第一作者,中国科学院动物研究所李伟研究员与周琪研究员为共同通讯作者。该研究工作得到科学技术部、国家自然科学基金委员会、中国科学院、北京市自然科学基金等的大力支持。 ... PC版: 手机版:

封面图片

科学家发现光合作用的原子级秘密

科学家发现光合作用的原子级秘密 了解光合蛋白质的生产论文的共同作者、研究小组组长迈克尔-韦伯斯特(Michael Webster)博士说:"叶绿体基因的转录是制造光合蛋白的基本步骤,光合蛋白为植物提供生长所需的能量。我们希望通过更好地了解这一过程在详细的分子水平上能够帮助研究人员开发出光合作用更强的植物。这项工作最重要的成果是创建了一个有用的资源。研究人员可以下载我们的叶绿体聚合酶原子模型,并利用它提出自己关于叶绿体聚合酶如何发挥作用的假设,以及检验这些假设的实验策略。"光合作用是在叶绿体内进行的,叶绿体是植物细胞内的一个小区块,它含有自己的基因组,反映了叶绿体在被植物吞噬和合并之前曾是自由生活的光合细菌。看到植物叶绿体中转录光合基因的聚合酶分子。用电子显微镜收集到的单个分子图像经过分类和排列,揭示了蛋白质复合体结构架构的细节。资料来源:迈克尔-韦伯斯特和伊斯卡-普拉马尼克约翰-英纳斯中心的韦伯斯特小组研究植物如何制造光合蛋白,光合蛋白是实现这一优雅化学反应的分子机器,它将大气中的二氧化碳和水转化为单糖,并产生氧气作为副产品。蛋白质生产的第一阶段是转录,通过读取基因产生"信使RNA"。转录过程由一种名为 RNA 聚合酶的酶完成。叶绿体 RNA 聚合酶的复杂性50 年前,人们发现叶绿体中含有自己独特的 RNA 聚合酶。从那时起,科学家们就对这种酶的复杂程度感到惊讶。它比它的祖先细菌 RNA 聚合酶有更多的亚基,甚至比人类的 RNA 聚合酶还要大。韦伯斯特小组希望了解为什么叶绿体具有如此复杂的 RNA 聚合酶。为此,他们需要对叶绿体 RNA 聚合酶的结构构造进行可视化。研究小组使用一种称为低温电子显微镜(cryo-EM)的方法,对从白芥子植物中纯化的叶绿体RNA聚合酶样本进行成像。原子级分析的启示通过处理这些图像,他们建立了一个包含分子复合体中 5 万多个原子位置的模型。RNA 聚合酶复合体由 21 个亚基组成,分别在核基因组和叶绿体基因组中编码。研究人员对这一结构进行了仔细分析,从而开始解释这些元件的功能。这个模型让他们确定了一种蛋白质,它能在DNA转录过程中与DNA相互作用,并引导DNA进入酶的活性位点。另一种成分可以与正在产生的 mRNA 相互作用,从而在 mRNA 转化为蛋白质之前保护它不被蛋白质降解。韦伯斯特博士说:"我们知道叶绿体 RNA 聚合酶的每一个组成部分都起着至关重要的作用,因为缺少其中任何一个组成部分的植物都不能制造光合蛋白质,因此也就不能变绿。我们正在仔细研究原子模型,以确定装配的 21 个组件中每个组件的作用。"第一作者Ángel Vergara-Cruces博士说:"现在我们有了一个结构模型,下一步就是确认叶绿体转录蛋白的作用。通过揭示叶绿体转录的机制,我们的研究有助于深入了解叶绿体在植物生长、适应和应对环境条件中的作用。"共同第一作者伊斯卡-普拉马尼克(Ishika Pramanick)博士说:"从极具挑战性的蛋白质纯化开始,到为这一巨大复杂的蛋白质拍摄令人惊叹的低温电子显微镜图像,再到最终看到我们的工作成果的印刷版本,在这一非凡的工作历程中有许多令人惊喜的时刻。"韦伯斯特博士总结道:"高温、干旱和盐度限制了植物进行光合作用的能力。面对环境压力仍能可靠地生产光合蛋白的植物可能会以不同的方式控制叶绿体转录。我们期待看到我们的研究成果被用于开发更强健作物的重要工作中。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

基因的 "文字处理器" - 科学家揭示生物编程的全新机制

基因的 "文字处理器" - 科学家揭示生物编程的全新机制 桥式重组酶机制的可视化。来源:视觉科学这项研究是与 Arc 研究所核心研究员、斯坦福大学生物化学助理教授 Silvana Konermann 和东京大学结构生物学教授 Hiroshi Nishimasu 的实验室合作完成的。桥式重组酶机制的可视化,突出显示供体和目标结合环。来源:视觉科学基因编程新时代该研究的资深作者、Arc 研究所核心研究员、加州大学伯克利分校生物工程助理教授 Patrick Hsu 博士说:"桥式 RNA 系统是一种全新的生物编程机制。桥式重组可以通过序列特异性插入、切除、反转等方式普遍修改遗传物质,从而实现超越CRISPR的活体基因组文字处理器。"桥式重组系统源于插入序列 110(IS110)元件,它是无数种可转座元件(或称"跳跃基因")中的一种,可在微生物基因组内部和之间进行剪切和粘贴。可转座元件遍布所有生命形式,并已进化成专业的 DNA 操作机器,以求生存。IS110元件非常简单,仅由一个编码重组酶的基因和侧翼DNA片段组成,而这些DNA片段直到现在仍是一个谜。可视化桥式重组酶机制,突出显示转座子 DNA 和基因组目标位点。来源:视觉科学桥式 RNA 的先进机制Hsu 实验室发现,当 IS110 从基因组中切除时,非编码 DNA 的末端会连接在一起,产生一个折叠成两个环的 RNA 分子桥接 RNA。其中一个环路与 IS110 元本身结合,而另一个环路则与插入 IS110 元的目标 DNA 结合。桥接 RNA 是双特异性引导分子的第一个例子,它通过碱基配对相互作用指定目标 DNA 和供体 DNA 的序列。研究小组发现了桥式重组酶机制,这是一种以可编程方式重组和重排 DNA 的精确而强大的工具。桥式重组酶机制远远超越了CRISPR等可编程基因剪刀,它使科学家们不仅能指定要修改的目标DNA,还能指定要识别的供体材料,因此他们可以插入新的功能性遗传物质,剪除有问题的DNA,或反转任何两个感兴趣的序列。通过这段可视化桥式重组机制关键环节的视频短片,您可以了解更多信息。来源:视觉科学桥接 RNA 的每个环路都可独立编程,研究人员可以将感兴趣的目标 DNA 序列与供体 DNA 序列混合匹配。这意味着该系统可以远远超越其插入 IS110 元件本身的天然作用,而是能够将任何理想的基因载荷(如有缺陷的致病基因的功能拷贝)插入到任何基因组位置。在这项工作中,研究小组证明,在大肠杆菌中插入所需基因的效率超过 60%,对正确基因组位置的特异性超过 94%。共同第一作者、加州大学伯克利分校生物工程研究生尼克-佩里(Nick Perry)说:"这些可编程桥接 RNA 将 IS110 与其他已知重组酶区分开来,后者缺乏 RNA 成分,无法进行编程。就好像桥接 RNA 是一个通用电源适配器,能让 IS110 与任何插座兼容"。Patrick Hsu、Nick Perry 和 Matt Durrant 讨论新发现的桥式重组酶机制。图片来源:Ray Rudolph合作研究和未来影响Hsu实验室与东京大学Hiroshi Nishimasu博士实验室的合作补充了他们的发现,这一发现也于6月26日发表在《自然》杂志上。Nishimasu 实验室利用低温电子显微镜确定了与目标 DNA 和供体 DNA 结合的重组酶桥 RNA 复合物的分子结构,并依次对重组过程的关键步骤进行了分析。Januka Athukoralage、Nicholas Perry、Silvana Konermann、Matthew Durrant、Patrick Hsu、James Pai 和 Aditya Jangid。图片来源:雷-鲁道夫随着进一步的探索和发展,桥接机制有望开创第三代 RNA 引导系统,超越 CRISPR 和 RNA 干扰(RNAi)的 DNA 和 RNA 切割机制,为可编程 DNA 重排提供统一机制。对于哺乳动物基因组设计桥式重组系统的进一步发展至关重要的是,桥式重组酶可以连接两条 DNA 链,而不会释放切割 DNA 片段这避开了当前最先进基因组编辑技术的一个关键局限。"桥式重组机制解决了其他基因组编辑方法所面临的一些最基本的挑战,"研究共同负责人、Arc 公司资深科学家马修-达兰特(Matthew Durrant)说。"可编程地重新排列任意两个DNA分子的能力为基因组设计的突破打开了大门"。编译自/ScitechDaily ... PC版: 手机版:

封面图片

中国科学家对肿瘤耐药机制的研究取得突破

中国科学家对肿瘤耐药机制的研究取得突破 《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 DNA 修复蛋白(NBS1)蛋白乳酸化修饰在肿瘤化疗耐药中的关键调控作用,对困扰全球医学界的 “百年谜题” 肿瘤如何产生耐药机制研究取得突破。 《NBS1 蛋白乳酸化修饰促进 DNA 损伤修复引起肿瘤耐药》揭示了肿瘤细胞如何抵抗化疗产生耐药性,为肿瘤免疫治疗、肿瘤放疗、肿瘤复发等问题研究开辟了新视角。

封面图片

科学家发现所有哺乳动物脑细胞共有的学习基因的新功能

科学家发现所有哺乳动物脑细胞共有的学习基因的新功能 对小鼠的研究可以为治疗SYNGAP1基因突变儿童的大脑发育障碍提供指导。约翰斯-霍普金斯大学医学院的神经科学家发现了SYNGAP1基因以前未知的功能,该基因的DNA序列控制着包括小鼠和人类在内的哺乳动物的记忆和学习。这一发现最近发表在《科学》(Science)杂志上,它可能会影响针对SYNGAP1突变儿童的疗法的开发,这些儿童患有一系列以智力障碍、类似自闭症的行为和癫痫为特征的神经发育障碍。一般来说,SYNGAP1 和其他基因通过制造调节突触强度(脑细胞之间的连接)的蛋白质来控制学习和记忆。研究人员说,以前人们认为SYNGAP1基因只通过编码一种蛋白来发挥作用,这种蛋白的作用类似于酶,能调节导致突触强度变化的化学反应。现在,科学家们说,他们在小鼠身上进行的实验表明,该基因编码的蛋白质的功能可能更像一种所谓的支架蛋白,它能调节突触的可塑性,或突触随着时间的推移变得更强或更弱,而与酶的活性无关。他们说,SynGAP 蛋白似乎扮演着交通管理者的角色,指挥着大脑蛋白质在突触的位置和内容。探索与实验约翰霍普金斯大学医学院神经科学和心理与脑科学布隆伯格特聘教授、所罗门-H-斯奈德神经科学系主任理查德-胡加尼尔博士和他的团队于 1998 年首次分离出SYNGAP1基因。胡加尼尔说,SynGAP 蛋白在突触中的含量非常丰富,长期以来,人们一直认为 SynGAP 的主要作用是引发调节突触强度的酶化学反应。但是,在研究 SynGAP 蛋白的过程中,休加尼尔等人开始发现,当 SynGAP 蛋白与主要的突触支架蛋白 PSD-95 发生作用时,它们具有一种奇怪的特性。它们会变成液滴,对于酶蛋白来说,这种结构转变是不寻常的。显示 SynGAP(绿色)与突触处 PSD-95 结合的神经元。图片来源:约翰霍普金斯大学医学院 Yoichi Araki 和 Rick Huganir为了弄清并理解SynGAP奇特的液体转变的目的,胡加尼尔、神经科学导师荒木洋一和胡加尼尔在约翰霍普金斯大学的研究团队设计了神经元实验,他们在SYNGAP1基因的所谓GAP结构域中插入突变,从而在不影响其结构的情况下消除SynGAP的酶功能。约翰-霍普金斯大学的研究小组发现,即使没有酶的活性,突触也能正常工作,这表明结构特性本身对 SynGAP 的功能非常重要。研究小组接下来在小鼠身上进行了相同类型的基因工程,以去除 SynGAP 的酶功能,结果发现类似:突触表现正常,突触可塑性没有问题,小鼠的学习和记忆行为也没有困难。研究小组称,这表明 SynGAP 的结构特性足以保证正常的认知行为。为了了解SynGAP的结构是如何调节突触的,科学家们对突触进行了更仔细的分析,发现SynGAP蛋白与AMPA受体/TARP复合物(加强突触的神经递质蛋白束)和PSD-95支架蛋白的结合存在竞争。实验表明,在静止状态下,SynGAP 与 PSD-95 紧密结合,不允许它与突触中的任何其他蛋白质结合。然而,在突触可塑性、学习和记忆过程中,SynGAP 蛋白会断开与 PSD-95 的连接,离开突触,并允许神经递质受体复合物与 PSD-95 结合。这使得突触变得更强,增加了脑细胞之间的传递。Huganir说:"这一系列过程并没有SynGAP典型的催化活性。相反,SynGAP 在与 PSD-95 结合时会将其束缚住,但当 SynGAP 离开这个突触时,PSD-95 就会开放,与 AMPA 受体/TARP 复合物结合。"在 SynGAP 基因突变的儿童中,突触中的 SynGAP 蛋白数量减少了一半左右。由于 SynGAP 蛋白的数量减少,PSD-95 可能会更多地与 AMPA 受体/TARP 复合物结合,从而改变神经元的连接,导致脑细胞活动增加,这就是 SynGAP 突变儿童常见的癫痫发作的特征。Huganir说,SynGAP的两种功能酶和支架蛋白的"交通管理"作用现在可能对寻找SynGAP相关神经发育障碍的治疗方法非常重要。他们的研究还表明,仅针对SynGAP的一种功能可能不足以产生重大影响。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人