有关细胞器的新发现可以让濒临死亡的植物起死回生

有关细胞器的新发现可以让濒临死亡的植物起死回生 这一发现发表在《自然-植物》杂志的一篇文章中,研究小组对此感到非常兴奋。"对我们来说,这一发现意义重大。我们第一次明确了细胞中一个细胞器的深远重要性,而这个细胞器以前与衰老过程并无关联,"加州大学洛杉矶分校分子生物学杰出教授、这篇新文章的合著者凯蒂-德赫什(Katie Dehesh)说。高尔基体和 COG 蛋白:细胞健康的关键角色高尔基体是由一系列杯状膜包囊组成的细胞器,有时被形容为像一叠泄了气的气球或一些掉落的千层面。它将细胞中的各种分子分类,确保它们到达正确的位置。"高尔基体就像是细胞的邮局。它们将蛋白质和脂质打包并发送到需要的地方,"UCR 植物学和植物科学系研究员、新研究的共同作者 Heeseung Choi 说。"高尔基体受损会给细胞活动带来混乱和麻烦,影响细胞如何工作和保持健康"。加州大学河滨分校研究人员 Heeseung Choi 和 Katie Dehesh 在实验室里拿着嫩绿和老黄的拟南芥植物。图片来源:Katie Dehesh/加州大学河滨分校如果说高尔基体是邮局,那么 COG 蛋白就是邮递员。这种蛋白质能控制和协调小囊"信封"的运动,这些小囊"信封"能将其他分子运送到细胞周围。此外,COG 还能帮助高尔基体将糖连接到其他蛋白质或脂质上,然后再将它们送到细胞的其他地方。这种糖修饰被称为糖基化,对包括免疫反应在内的许多生物过程都至关重要。通过实验了解 COG 的作用为了进一步了解 COG 如何影响植物细胞,研究小组对一些植物进行了改造,使其无法产生 COG。在正常生长条件下,经过改造的植物生长良好,与未改造的植物没有区别。然而,剥夺植物的光照意味着植物无法利用阳光制造糖来促进生长。当暴露在过度的黑暗中时,不含 COG 的突变体植物的叶子开始变黄、起皱和变薄,这是植物即将死亡的迹象。"在黑暗中,COG突变体显示出衰老的迹象,野生、未改良的植物通常在第九天左右出现这种迹象。但在突变体中,这些迹象在短短三天内就表现出来了,"Choi 说。"逆转突变让 COG 蛋白重新回到植物体内,植物迅速恢复了生机。"Dehesh说:"一旦我们逆转了突变,它们就像什么都没发生过一样。这些反应凸显了COG蛋白和高尔基体正常功能在压力管理中的关键重要性。"这一发现的兴奋之处在于,人类、植物和所有真核生物的细胞中都有高尔基体。现在,植物可以作为一个平台来探索高尔基体在人类衰老中的复杂作用。因此,研究小组正计划进一步研究这项研究成果背后的分子机制。Dehesh说:"我们的研究不仅增进了我们对植物衰老过程的了解,而且还为人类衰老提供了重要线索。当 COG 蛋白复合物不能正常工作时,它可能会使我们的细胞加速衰老,就像我们在植物身上看到的那样,当它们缺乏光照时也是如此。这一突破可能会对衰老和老年相关疾病的研究产生深远影响。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

生命的收缩:新发现重塑我们对胚胎形成的认识

生命的收缩:新发现重塑我们对胚胎形成的认识 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 处于囊胚期准备植入的人类胚胎。细胞核包膜显示为蓝色,肌动蛋白细胞骨架显示为橙色。图片来源:Julie Firmin 和 Jean-Léon Maître居里研究所(CNRS/Inserm/Institut Curie)遗传学和发育生物学小组的科学家们领导的一个跨学科研究小组在研究这一鲜为人知的现象的作用机制时发现了一个惊人的发现:人类胚胎的压实是由胚胎细胞的收缩驱动的。因此,压实问题是由于这些细胞的收缩能力有问题造成的,而不是像以前假设的那样是由于它们之间缺乏粘合力造成的。这一机制已在苍蝇、斑马鱼和小鼠身上发现,但在人类身上尚属首次。处于 4 细胞阶段的人类胚胎。细胞 DNA 显示为红色,肌动蛋白细胞骨架显示为蓝色。右侧的细胞刚刚将其基因组一分为二,即将分裂。资料来源:Julie Firmin et Jean-Léon Maître由于目前有近三分之一的人工授精不成功,研究小组希望通过提高我们对人类胚胎早期发育阶段的认识,为完善人工授精技术做出贡献。这些结果是通过绘制人类胚胎细胞的细胞表面张力图获得的。科学家们还测试了抑制收缩力和细胞粘附力的效果,并分析了收缩力有缺陷的胚胎细胞的机械特征。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究发现细胞膜损伤会导致细胞衰老

新研究发现细胞膜损伤会导致细胞衰老 日本科研人员的一项新研究显示,细胞膜受损除了导致细胞的死亡或自我修复外还有第三种可能导致细胞衰老。 新华社报道,细胞膜是细胞的一层厚约五纳米的“防护外壳”,相当于肥皂泡厚度的二十分之一。这层薄膜易受机体活动损伤,也具有自我修复能力。一直以来,人们认为细胞在细胞膜受损后,要么修复要么死亡。 日本冲绳科学技术大学院大学的研究人员开发了一种诱导芽殖酵母细胞和人体成纤维细胞的细胞膜损伤的方法。通过全基因组测序筛选等检测,研究人员发现细胞膜损伤限制了芽殖酵母细胞的复制能力;在成纤维细胞中,细胞膜损伤会导致细胞过早衰老。 普通细胞的分裂能力是有限的大约分裂50次后就无法再继续,随后便进入细胞衰老状态。此外,在实验室环境中,脱氧核糖核酸(DNA)损伤、端粒缩短、致癌基因激活等因素也会诱发细胞衰老。长期以来,研究界一直认为细胞衰老其实都是通过激活DNA损伤反应来诱导的。 然而,研究人员在此次研究中发现,细胞膜损伤导致细胞衰老的机制并不通过常规的激活DNA损伤反应来诱导,而是独立于此的另外机制,且细胞膜损伤导致的细胞衰老过程比激活DNA损伤反应诱导的衰老过程慢。 近年的研究显示,清除动物和人体内的衰老细胞可以改善与年龄相关的疾病。研究人员认为,该研究结果有助于制定未来增进健康、延年益寿的策略。 这一研究成果发表在新一期英国《自然·老化》杂志上。 2024年2月27日 12:18 PM

封面图片

研究发现癌细胞如何相互拉扯决定了癌症是否扩散

研究发现癌细胞如何相互拉扯决定了癌症是否扩散 在今天发表于 AIP 出版社《APL 生物工程》(APL Bioengineering)上的一篇论文中,来自德国和西班牙的研究小组利用乳腺癌细胞系面板以及乳腺癌和宫颈癌患者的原发肿瘤外植体,研究了两种不同的细胞收缩力模式:一种是产生集体组织表面张力,使细胞簇保持紧凑;另一种是更具方向性的收缩力,使细胞能够将自身拉入 ECM。"我们重点研究了两个参数,即细胞拉扯 ECM 纤维并产生牵引力的能力,以及细胞相互拉扯从而产生高组织表面张力的能力,"作者 Eliane Blauth 说。"我们将每种特性与不同的收缩机制联系起来,并询问它们如何与癌细胞逃逸和肿瘤侵袭性联系起来"。胶原蛋白网络上的两个恶性混合穆勒氏瘤外植体。两块瘤体都粘附在胶原蛋白网络上,并开始拉扯胶原蛋白纤维,这促使胶原蛋白发生广泛的位移和排列,同时也导致了以应力纤维收缩能力为主的细胞逃逸。这两块胶原尖锐而光滑的边界结构进一步表明,组织表面张力很强,阻碍了皮质收缩力占优势的细胞逃逸。资料来源:Steffen Grosser、Frank Sauer 和 Eliane Blauth研究小组发现,更具侵袭性的细胞对 ECM 的拉力比对自身的拉力更大,而非侵袭性细胞对自身的拉力比对 ECM 的拉力更大不同的拉力行为归因于细胞内不同的肌动蛋白细胞骨架结构。侵袭性细胞主要使用肌动蛋白应力纤维横跨细胞的粗大肌动蛋白束对周围环境产生拉力,而非侵袭性细胞则通过其肌动蛋白皮层细胞膜正下方的薄网络产生拉力。研究表明,决定细胞逃逸潜力的不是这些收缩模式的总体大小,而是它们之间的相互作用。仅用中度侵袭性细胞进行的实验表明,这些细胞对 ECM 纤维产生的总作用力与非侵袭性细胞相当,但它们仍能脱离并侵袭 ECM,这是非侵袭性细胞无法做到的。"非侵袭性细胞仍具有较高的皮质收缩力,使它们保持在一起,而中度侵袭性细胞的皮质收缩力几乎消失,"布劳特说。"因此,尽管它们对 ECM 纤维的拉力要弱得多,但对它们的牵制作用并不大。"研究小组对来自患者的重要肿瘤外植体进行的测量证实了他们在细胞系实验中的发现。在这里,具有高皮质收缩性的细胞数量在肿瘤发展过程中有所减少。"这进一步表明,随着肿瘤的生长,细胞相互拉扯并将自身聚集在一起的能力会变弱,从而可能增加转移风险"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家正尝试将水熊虫蛋白植入人类细胞

科学家正尝试将水熊虫蛋白植入人类细胞 怀俄明大学的研究人员领导的一项新研究发现,在人体细胞中表达关键的水熊虫蛋白会减缓新陈代谢,这为了解这些难以被杀死的无脊椎动物如何在最极端的条件下生存提供了重要的启示。研究小组重点研究了一种名为CAHS D的特殊蛋白质,众所周知,这种蛋白质可以防止极端干燥(脱水)。通过各种方法,研究人员展示了 CAHS D 在受到压力时如何转变成凝胶状,从而保护分子并防止干燥。研究人员在发表的论文中写道:"这项研究深入揭示了水熊虫以及其他潜在的耐干燥生物是如何利用生物分子凝结在干燥环境中存活下来的。除了应激耐受性,我们的研究结果还提供了一条途径,可以围绕诱导细胞甚至整个生物体的生物稳态来开发技术,从而延缓衰老并增强储存和稳定性。"迟发型生物已经证明,它们可以在酷热和严寒的环境中生存,可以在对人类致命的高辐射环境中生存,也可以在长期缺水的环境中生存水通常是生命的必需品。它们甚至可以在太空中生存。先前的研究揭示了水熊虫历经数亿年积累起来的令人印象深刻的生存技巧。从根本上说,在 CAHS D 的帮助下,它们非常善于减缓生命进程,而这对人类细胞也可能有用。怀俄明大学的分子生物学家西尔维娅-桑切斯-马丁内斯说:"令人惊讶的是,当我们将这些蛋白质引入人体细胞时,它们会凝胶化,减缓新陈代谢,就像在水熊虫体内一样。当把含有这些蛋白质的人类细胞置于生物静止状态时,它们会变得更能抵抗压力,从而把水熊虫的一些能力赋予人类细胞。"在未来的某一天,我们也许能找到方法,将这种惊人的水熊虫复原力传递给我们自己的细胞和组织,从而有可能减缓生物衰老,并有助于在低温条件下安全储存细胞的治疗,例如器官移植。要利用这种能力的转移,还需要大量的进一步研究,目前已经在进行一些研究,探讨水熊虫蛋白能否稳定用于治疗遗传疾病的重要血液制品。早期迹象表明,在多个领域,包括当环境压力存在时,这种蛋白质会被智能地激活,而当环境压力不存在时,这种蛋白质又会失活。怀俄明大学分子生物学家托马斯-布斯比(Thomas Boothby)说:"当压力得到缓解时,水熊虫凝胶就会溶解,人体细胞就会恢复正常的新陈代谢。"这项研究发表在《蛋白质科学》上。 ... PC版: 手机版:

封面图片

超强化疗:彻底消灭"僵尸"细胞 战胜癌症

超强化疗:彻底消灭"僵尸"细胞 战胜癌症 巴塞罗那国际研究理事会的曼努埃尔-塞拉诺博士领导的一个国际研究小组描述了化疗后衰老的癌细胞如何激活PD-L2蛋白来保护自己不受免疫系统的侵害,同时招募免疫抑制细胞。后者创造了一种抑制环境,削弱了淋巴细胞杀死癌细胞的能力。基于这些发现,科学家们想知道使 PD-L2 失活会产生什么影响。有趣的是,缺乏 PD-L2 的衰老细胞会被免疫系统迅速清除。这就阻断了衰老细胞创造免疫抑制环境的能力,因此淋巴细胞仍能完全杀死那些可能逃脱化疗影响的癌细胞。衰老的人类黑色素瘤肿瘤细胞。在棕色细胞中,PD-L2 蛋白起着保护作用,阻止免疫系统发挥作用。图片来源:IRB Barcelona"通过在小鼠模型中阻断 PD-L2,我们发现化疗对癌症更有效。这一发现为考虑使用潜在的 PD-L2 抑制剂作为治疗这种疾病的辅助手段铺平了道路,"现任 Altos 实验室(英国剑桥)的 Manuel Serrano 博士解释说。研究使用了黑色素瘤、胰腺癌和乳腺癌的细胞系和动物模型。细胞衰老是一个在衰老过程中自然发生的过程,在癌症治疗中也很常见。大多数治疗方法(如化疗和放疗)都会造成广泛的细胞损伤,从而导致细胞衰老,尤其是在肿瘤内部。科学家小组现在将研究与机体衰老有关的衰老细胞是否也会表现出 PD-L2 水平的升高。"虽然还需要更多的实验来确定这种分子在不同类型人类癌症中的作用,但这项工作加深了我们对PD-L2的作用以及衰老细胞与免疫系统相互作用的理解,"来自同一实验室的博士后研究员何塞-阿尔贝托-洛佩斯(José Alberto López)博士解释说,他与塞利姆-柴布(Selim Chaib)博士是这项工作的第一作者。2024 年,洛佩斯博士将在萨拉曼卡癌症研究中心(Salamanca Cancer Research Center)成立一个新的实验室。Chaib博士目前在美国明尼苏达州的梅奥诊所工作。参考文献:2024 年 1 月 24 日,《自然-癌症》。DOI: 10.1038/s43018-023-00712-x编译自/scitechdaily ... PC版: 手机版:

封面图片

邓迪大学科学家发现阻止活跃癌细胞的方法

邓迪大学科学家发现阻止活跃癌细胞的方法 邓迪大学药物发现部门(DDU)与伦敦玛丽女王大学的一个合作研究项目发现了一种被称为工具分子的化学物质,它可以阻止活跃的癌细胞。通过合作推进癌症治疗使用这些工具分子可以迫使一种特定类型乳腺癌的肿瘤细胞进入促衰老状态类似于睡眠状态,在这种状态下,它们不再分裂或导致肿瘤生长。这种情况会使癌细胞对第二类工具分子(称为"衰老分解药物")产生敏感性,从而消灭癌细胞。它还可以"释放"癌细胞,让人体的免疫系统看到它们,从而提供更多的治疗机会。研究人员在研究基底样乳腺癌(BLBC)时开发出了这种"双拳"方法。癌症新疗法的潜力由巴兹慈善机构资助、伦敦玛丽女王大学衰老学教授兼表型筛选设施学术带头人 Cleo Bishop 领导的研究小组发现了一种迫使 BLBC 细胞进入促衰老状态的途径。随后,他们与邓迪大学药物发现组(DDU)的另一个团队合作,开发出了促进细胞衰老的工具分子。邓迪大学药物发现小组成员。资料来源:邓迪大学目前,其他地方正在开发药物疗法,以打出消灭细胞的"第二拳"。毕晓普教授说:"目前,治疗蓝细胞白血病最常见的方法是手术和不成熟的化疗方案。因此,由于缺乏量身定制疗法的可能靶点,而且临床过程具有侵袭性,这意味着患有 BLBC 的女性预后特别差。促衰老疗法能激活稳定的细胞周期停滞,阻止肿瘤生长,引发抗肿瘤免疫反应,并使癌症接受称为衰老素的新型治疗方案"。这项研究利用高内涵成像技术从 DDU 的多样性库中识别出工具分子,制药公司 ValiRx 现已选定这些分子进行进一步评估。本月,邓迪大学与该公司签署了一项为期五年的协议。根据该协议,"第一拳"工具分子将率先进入为期 12 个月的评估阶段,如果评估成功,三方将合资成立一家新公司。邓迪大学药物发现部业务发展主管夏洛特-格林(Charlotte Green)说:"近年来,一举两得的方法受到了广泛关注,但目前还没有临床先例,通过与 ValiRx 公司合作推进该项目,我们将引领研究成果向临床转化的方向。"ValiRx 首席执行官 Suzy Dilly 博士说:"邓迪大学和研究设施的实力令人印象深刻,在过去一年中,我们审查了来自邓迪大学团队的多个项目,我们相信,这份评估协议将成为一系列新项目中的第一个,可以纳入我们的管道。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人