飞秒激光将玻璃变成"透明"光能收集器

飞秒激光将玻璃变成"透明"光能收集器 利用飞秒激光蚀刻半导体图案,将碲玻璃变成"透明"光能收集器。资料来源:EPFL / Lisa Ackermann科学家们对碲玻璃中的原子在高能飞秒激光的快速脉冲照射下如何重组很感兴趣,他们偶然发现在玻璃上形成了纳米级的碲和氧化碲晶体,这两种半导体材料都是蚀刻在玻璃上的,而这正是玻璃被照射的地方。这就是科学家们发现的奇迹时刻,因为半导体材料暴露在日光下可能会产生电能。"碲是半导体,基于这一发现,我们想知道是否有可能在碲玻璃表面写入持久的图案,从而在光线照射下可靠地诱发电流,答案是肯定的,"负责管理 EPFL Galatea 实验室的 Yves Bellouard 解释说。"这项技术的一个有趣的转折点是,在这个过程中不需要额外的材料。只需要碲玻璃和飞秒激光就能制造出活性光电导材料。"EPFL 团队利用东京工业大学同事生产的碲玻璃,运用飞秒激光技术的专业知识对玻璃进行改性,并分析激光的效果。在直径为 1 厘米的碲玻璃表面照射一个简单的线条图案后,Torun 发现它在紫外线和可见光谱照射下能产生电流,而且这种电流能持续数月之久。伊夫-贝鲁亚尔说:"太神奇了,我们正在用光将玻璃变成半导体。伊夫-贝鲁亚德说:"我们实质上是在把材料变成另一种东西,也许接近炼金术士的梦想!" ... PC版: 手机版:

相关推荐

封面图片

将两个激光器结合 飞秒激光 3D 打印成本大幅缩减

将两个激光器结合 飞秒激光 3D 打印成本大幅缩减 美国普渡大学科学家开发出一种新型双光子聚合技术。这项技术巧妙地将两个激光器结合,借助 3D 打印技术,在将飞秒激光功率降低 50% 的情况下,打印出了复杂的高分辨率 3D 结构。它有助降低高分辨率 3D 打印工艺成本,从而进一步扩大应用范围。相关研究论文发表于最新一期《光学快报》杂志。 (科技日报)

封面图片

功能材料新“大门” 中科大飞秒激光打印出人工微细血管

功能材料新“大门” 中科大飞秒激光打印出人工微细血管 飞秒激光动态全息加工方法是一种利用超短脉冲激光进行微纳加工的技术,其特点是能够实现对材料的精细加工和微纳米级别的结构控制。这项技术在制造微细结构方面具有独特的优势,因为它可以实现对材料的高精度切割和微纳米级的表面改性。特别是在构建三维微细结构时,飞秒激光动态全息加工方法可以实现对复杂结构的精细加工和快速制作,为微血管网络的构建提供了重要的技术支持。三维毛细血管网络的构建对于组织工程具有重要的意义。在人工组织和器官的制备过程中,良好的血液供应系统是确保细胞存活和功能的重要保障。然而,传统的体外组织工程制备往往无法有效构建与之相适应的血管系统,导致细胞在体内植入后缺乏有效的血液供应。因此,构建具有生理功能的三维毛细血管网络对于实现人工组织的长期稳定生长和发挥其功能至关重要。飞秒激光动态全息加工方法的引入为构建微血管网络提供了新的可能性和技术支持。通过该方法,可以实现微血管支架的高效构建,为体外组织工程提供了新的解决方案。针对三维毛细血管支架的高效构建,飞秒激光动态全息加工方法具有独特的优势。首先,飞秒激光动态全息加工方法可以在微尺度上实现高精度的加工和结构控制,其加工精度可以达到亚微米甚至纳米级别。这为构建微细的血管支架提供了重要的技术基础,能够实现更加精细和复杂的结构。其次,飞秒激光动态全息加工方法具有加工速度快、成型效率高的特点,可以在较短的时间内完成复杂微结构的制备,为大规模制备三维毛细血管网络提供了可能。因此,飞秒激光动态全息加工方法的应用在三维毛细血管支架的构建中具有重要的技术优势。相关研究成果已经发表于《先进功能材料》,这标志着飞秒激光动态全息加工方法在三维毛细血管网络构建领域取得了重要突破。这一成果的发表不仅证明了该技术在微血管网络构建中的可行性和创新性,也为该领域后续的研究和应用奠定了基础。通过学术期刊的发表,相关研究成果将得到更广泛的认可和关注,有助于推动该技术在组织工程领域的应用和推广。另外,相关技术还获得了专利授权,这意味着该项研究在技术创新和知识产权保护方面取得了重要进展。专利授权不仅对于科研团队而言是一项重要的荣誉,更重要的是可以为后续的产业化应用和商业化转化提供有力的支持。能够通过知识产权的保护确保相关技术在市场竞争中的合法地位,有利于吸引更多的资金和资源投入到相关技术的研发和产业化进程中,推动科研成果更好地转化为生产力。人工微血管网络的应用前景非常广阔。首先,该技术在组织工程和再生医学领域具有重要意义,可以为人工器官和组织的构建提供重要的生理支持,有助于解决传统组织工程中面临的血管供血难题,为人工器官的长期稳定功能提供必要的条件。其次,人工微血管网络的构建还为药物筛选、疾病模型建立等领域提供了新的研究工具和平台,有助于推动相关领域的研究和应用进程。未来,随着人工微血管网络技术的不断完善和推广,相信它将在医学、生物工程等多个领域展现出巨大的应用潜力,为人类健康事业带来新的希望和机遇。通过以上介绍,我们不难看出,飞秒激光动态全息加工方法在人工微血管网络构建领域具有重要的意义和广阔的应用前景。随着相关技术的不断进步和完善,相信它将为组织工程和再生医学领域带来重大的变革和突破,为人类健康事业作出重要贡献。在未来的发展道路上,我们期待该项技术能够得到更广泛的应用,并为人类生命健康事业带来更多的惊喜和希望。 ... PC版: 手机版:

封面图片

传英伟达也要使用玻璃基板

传英伟达也要使用玻璃基板 韩媒BusinessKorea报导,业界消息7日表示,高效能AI芯片竞争加剧下,半导体巨擘如辉达、超微、英特尔等,预料最快2026年采用玻璃基板。KB证券的研究分析师李昌民(音译)预测,AI数据处理数量激增下,塑胶材质基板到2030年将难担重任。玻璃基板最初将用于AI加速器和伺服器CPU等高阶产品,之后逐渐扩大使用。英特尔去年5月宣布扩足玻璃基板业务,已与部分韩企合作。另一方面,SKC是首家投入玻璃基板业务的韩厂,该公司与芯片设备大厂应材(Applied Materials)携手成立Absolics,斥资2.4亿美元在美国乔治亚州打造工厂。三星电机(Samsung Electro-Mechanics)和LG Innotek也将玻璃基板视为新成长引擎,已启动生产投资。科技网站9to5Mac指出,目前的PCB通常是在铜和阻焊层下,混合纤维玻璃和树脂制成。此种材料对温度相当敏感,必须透过动态热能管理(thermal throttling)控制温度,也就是在过热时,必须降低芯片效能。这表示芯片维持最高性能的时间有限。改用玻璃基板能大幅提高电路板所能承受的温度,代表芯片维持最佳性能的时间,能持续更久。与此同时,玻璃基板非常平,能进行更精准的刻蚀,可提高晶体管密度。英特尔目前是此一方面的领导者。争霸玻璃基板随着全球人工智能 (AI) 的蓬勃发展,促使苹果等大型科技公司考虑在半导体工艺中采用下一代玻璃基板,SKC、三星电机和 LG Innotek 等韩国企业集团也加入了这场竞争,预示着一场重大变革。行业的转变。4月7日业内人士透露,随着高性能AI半导体的竞争加剧,得益于技术进步,英特尔、英伟达、AMD等全球半导体公司预计最早将于2026年采用玻璃基板。KB证券研究分析师Lee Chang-min预测:“随着AI数据处理量呈指数级增长,到2030年,有机(塑料)材料基板将变得不足。玻璃基板最初应用于人工智能加速器和服务器中央处理器等高质量产品,预计将逐步扩展到更广泛的产品。”玻璃基板利用玻璃代替传统的塑料材料,由于其刚性,可以形成更精细的电路,并且由于其耐热性和抗弯曲性,有利于大规模应用。它们还具有电信号损失和速度方面的优势。将多层陶瓷电容器 (MLCC) 等无源元件直接嵌入玻璃中可以集成更多晶体管。半导体行业预计,在半导体工艺中采用玻璃基板可以使半导体微加工技术显着进步两代或更多代。去年5月宣布进军玻璃基板业务的英特尔,一直在通过与国内一些半导体设备公司的合作,积极准备玻璃基板的应用。SKC是韩国最早涉足玻璃基板业务的公司。SKC与全球最大的半导体设备公司应用材料公司(AMAT)合作成立Absolics,并投资2.4亿美元在乔治亚州建设玻璃基板制造工厂。该工厂预计将于今年第二和第四季度开始生产。国内零部件巨头三星电机和LG Innotek也将玻璃基板视为新的增长动力,并开始进行生产投资。三星电机于1月份在美国内华达州拉斯维加斯举行的CES 2024上正式宣布进军玻璃基板市场。业界预计将于2025年进行原型生产,并于2026年开始全面量产。还有预测称,三星集团的电子子公司将在玻璃基板生产方面进行合作,分别由三星电机、三星电子和三星显示器负责研究半导体和基板的开发、制造、组合以及玻璃工艺。LG Innotek 正在大力实现业务多元化,包括扩大半导体基板业务,也将玻璃基板视为未来的主要收入来源。相关文章:Intel发明全新玻璃基板封装 互连密度提升10倍三星加速玻璃基板芯片封装研发苹果积极布局玻璃基板芯片封装技术 ... PC版: 手机版:

封面图片

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体 研究中开发的光子拓扑绝缘体效果图。资料来源:伦斯勒理工学院伦斯勒理工学院(Rensselaer Polytechnic Institute)的研究人员制造出了一种比头发丝还细的装置,它将帮助物理学家研究物质和光的基本性质。他们的研究成果发表在《自然-纳米技术》(Nature Nanotechnology)杂志上,还有助于开发更高效的激光器,这种激光器被广泛应用于医疗和制造等领域。该设备由一种名为光子拓扑绝缘体的特殊材料制成。光子拓扑绝缘体可以引导光子(构成光的波状粒子)进入材料内部专门设计的界面,同时还能防止这些粒子通过材料本身发生散射。由于这一特性,拓扑绝缘体可以使许多光子相干地像一个光子一样行动。这些设备还可用作拓扑"量子模拟器",即研究人员可以研究量子现象(在极小尺度上支配物质的物理定律)的微型实验室。"我们创造的光子拓扑绝缘体是独一无二的。它能在室温下工作。这是一个重大进步。以前,人们只能使用昂贵的大型设备在真空中对物质进行超冷却,才能研究这种机制。许多研究实验室都没有这种设备,因此我们的设备可以让更多人在实验室里从事这种基础物理研究。"RPI 材料科学与工程系助理教授、《自然- 纳米技术》研究报告的资深作者 Wei Bao 说。Bao补充说:"这也是在开发运行所需能量更少的激光器方面迈出的充满希望的一步,因为我们的室温设备阈值(使其工作所需的能量)比以前开发的低温设备低七倍。"RPI 的研究人员利用半导体行业用于制造微芯片的相同技术制造出了他们的新型设备,这种技术包括将不同种类的材料逐个原子、逐个分子地分层,以制造出具有特定性能的理想结构。为了制造这种装置,研究人员在金属卤化物过氧化物(一种由铯、铅和氯组成的晶体)上生长出超薄板,并在上面蚀刻出带有图案的聚合物。他们将这些晶体板和聚合物夹在各种氧化物材料的薄片之间,最终形成了一个厚约 2 微米、长宽均为 100 微米的物体(人类头发的平均宽度为 100 微米)。当研究人员用激光照射该装置时,在材料设计的界面上出现了一个发光的三角形图案。这种图案由装置的设计决定,是激光拓扑特性的结果。"能够在室温下研究量子现象是一个令人兴奋的前景。鲍教授的创新工作表明,材料工程学可以帮助我们回答一些科学上的重大问题,"RPI 工程学院院长 Shekhar Garde 说。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

三星将于今年开始试生产玻璃基板半导体

三星将于今年开始试生产玻璃基板半导体 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 韩国媒体ET News 报道称,三星计划在今年年底前为其下一代封装技术建造一条"试验性"生产线,竣工日期定在 9 月。三星的玻璃基板概念最初是在 2024 年的美国消费电子展(CES 2024)上被推向市场的,当时该公司将其作为未来愿景进行了展示。尽管这些新型半导体还处于研发的雏形阶段,但这家韩国巨头已经决定,现在可能是投入生产的最佳时机,如果他们的雄心成真,就有可能超越竞争对手。玻璃基板半导体类型有许多优点,例如封装强度更高,可确保更长的耐用性和可靠性;由于玻璃通常比有机材料薄得多,因此互连密度更高,可在单个封装中集成多个晶体管。据说,它克服了传统方法的缺陷,为采用玻璃基板的计算芯片开辟了新的创新浪潮。三星在玻璃基板方面的影响力有多大,我们将拭目以待,因为英特尔在这一特定细分市场的发展历史悠久,很可能是该技术的先驱。不过,三星计划在 2026 年之前生产玻璃基板,这可能会使其在市场时机的把握上处于领先地位。 ... PC版: 手机版:

封面图片

紧凑型激光等离子加速器打破质子能量记录

紧凑型激光等离子加速器打破质子能量记录 HZDR 的一个研究小组采用一种创新方法,成功地通过激光脉冲大幅提高了质子的加速度。图片来源:HZDR / Blaurock紧凑型高能效加速器激光等离子体加速技术开辟了有趣的前景。与传统加速器相比,它有望提供更紧凑、更节能的设施因为新技术不是利用强大的无线电波来推动粒子运动,而是利用激光来加速粒子。其原理是用极短但高强度的激光脉冲照射薄如晶片的箔片。光线将材料加热到一定程度,使无数电子从材料中产生,而原子核则保持原位。由于电子带负电,而原子核带正电,因此它们之间会在短时间内形成一个强大的电场。该电场可将质子脉冲弹射到仅几微米的范围内,达到使用传统加速器技术需要更长距离才能达到的能量。然而,这项技术仍处于研究阶段:迄今为止,只有通过使用超大型激光系统才能实现高达 100 MeV 的质子能量,而世界上这样的激光系统屈指可数。为了利用较小的激光设备和较短的脉冲达到类似的加速器高能量,HZDR 的物理学家 Karl Zeil 和 Tim Ziegler 团队采用了一种新方法。他们利用了激光闪光的一个特性,而这一特性通常被视为缺陷。齐格勒报告说:"一个脉冲的能量不会立即启动,这是最理想的情况。取而代之的是,一小部分激光能量冲到它的前面,就像一种先锋队。"突然透明在这一新概念中,起关键作用的正是这种冲向前方的光线。当它照射到真空室中专门制造的塑料薄膜上时,就会以特定的方式改变塑料薄膜。"箔片在光的作用下膨胀,温度越来越高,厚度越来越薄,"齐格勒解释道。"在加热过程中,箔片会有效地融化"。这对紧随其后的主脉冲产生了积极影响:原本会反射大部分光线的箔片突然变得透明,这使得主脉冲能够比以前的实验更深入地穿透材料。齐格勒说:"结果是在材料中触发了复杂的级联加速机制,导致薄膜中的质子比我们的 DRACO 激光器加速得更快。用数字表示:该设备以前可以产生大约 80 兆电子伏的质子能量,而现在可以产生 150 兆电子伏,几乎翻了一番。"为了创下这一纪录,研究小组必须进行一系列实验,以接近完美的相互作用参数,例如所用薄膜的最佳厚度。在分析测量数据时,研究小组发现加速粒子束还有一个令人满意的特性:高能质子的能量分布很窄,也就是说,它们的速度几乎一样快这对以后的应用非常有利,因为高而均匀的质子能量对这些应用极为有利。优势:能源效率其中一项应用是研究新的放射生物学概念,以精确、温和地治疗肿瘤。使用这种方法,可以在很短的时间内使用很高剂量的辐射。在这些研究中,迄今为止主要使用的是大型传统治疗加速器,这种加速器只有德国的少数几个中心才有,而且当然要优先用于病人的治疗。现在,新的 HZDR 程序使紧凑型激光系统的使用变得更有可能,从而使更多的研究小组能够进行这些研究,并为传统系统无法提供的辐射场景提供便利。齐格勒说:"此外,如今的设备需要大量的电力。基于激光等离子体加速,它们可以更加经济。"该程序还可用于高效生成中子。激光闪烁可用于产生短而强烈的中子脉冲,这在科学和技术以及材料分析中都很有意义。在这方面,等离子体加速器也有望大大扩展以前的应用领域。但首先,科学家们希望改进这种新方法并更好地理解它。除其他事项外,他们还希望与其他实验室合作,以便更精确地控制过程,并使这项技术更加普及。进一步刷新纪录也已提上日程:能量超过 200 MeV 似乎完全有可能。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人