科学家利用等离子技术实现水净化技术的变革

科学家利用等离子技术实现水净化技术的变革 等离子体是科技界一场名副其实的革命。以前,要在手机等电子设备使用的硅板上雕刻电路,必须使用污染环境的化学产品。现在,使用等离子体可以更干净、更精确地完成这项工作,而且可以使缝隙越来越小,设备也随之越来越小。但等离子体也有其他应用,例如水处理。科尔多瓦大学的 FQM-136 等离子体物理学小组和 FQM-346 有机催化和纳米结构材料小组合作开展了一项研究,目的是通过应用等离子体促进化学过程来消除水中的污染物。为了解决水体中有机污染物日益增多的问题,例如水体中的染料和其他来自农业和工业活动的化合物会破坏生态系统的稳定,这些研究人员选择了等离子体的应用。研究人员弗朗西斯科-罗梅罗(Francisco J. Romero)、胡安-阿马罗(Juan Amaro)和玛丽亚-加西亚(Maria C García)。资料来源:科尔多瓦大学水净化方面的突破2017 年,研究团队首次证明,由向空气开放的微波诱导的氩等离子体在作用于水时,会在水中产生含氧和氮的活性物种(如羟基自由基、过氧化氢、氮自由基),能够消除水的污染。现在,研究人员胡安-阿马罗-加赫特、弗朗西斯科-J-罗梅罗-萨尔盖罗和玛丽亚-C-加西亚已经成功设计出了这种等离子体的反应器,并大大增加了水中产生的这些活性物质的数量,从而可以在短短几分钟内破坏高浓度染料(这里指亚甲基蓝)。这是通过改变 surfatron 的设计实现的,这种金属装置将微波发生器的能量与等离子体混合,以维持等离子体。玛丽亚-加西亚教授解释说:"我们所做的是在石英放电管中放入一小块硅,这样就能产生不同的等离子体,这种等离子体不是丝状的,在与水作用时能更有效地产生活性物种。上述等离子体成分在与水作用时能产生氧化物种,从而降解有机化合物和杀死微生物,这使得该等离子体反应器可用于与水修复相关的应用中。"因此,这种新配置扩大了这类等离子体的适用范围。加西亚教授解释说:"这种设计完全改变了表面加速器产生电磁场以产生等离子体的配置,从而使等离子体具有不同的、更有效的特性,同时也消除了破坏等离子体稳定性的丝状化问题(等离子体柱分成许多丝状)。"等离子去污的未来Francisco J. Romero 教授继续说道:"在等离子体作用下产生的氧化物具有很强的反应性,可以破坏水中的有机物。要做到这一点,等离子体并不是被引入水中。相反,等离子体是远程作用的,因此在水和等离子体之间有一个空气区,在这个空气区中,由于受激物种与氧气、氮气和水蒸气分子之间的碰撞,发生了许多反应,并产生了扩散到液体中并最终与污染物结合的活性物种"。研究员胡安-阿马罗说:"这种新型设计产生的等离子体的去污潜力已经过测试,可以减少水中高浓度的亚甲基蓝染料,在能量方面取得了非常高效的结果,在缩短处理时间的情况下实现了染料的完全消除。"等离子体是一种"第四物质状态",通过向稳定的气体提供能量并将其转化为电离气体而产生,它几乎适用于所有领域:制造微型芯片、表面消毒、伤口愈合、在眼镜上沉积防反射涂层、提高种子发芽率、回收废物、活化塑料表面以提高涂料附着力,以及无数其他应用。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体? 在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏 1 万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电球状闪电是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是 X 射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料” 美国政府定义了多少种? ... PC版: 手机版:

封面图片

科学家发明冷等离子喷射敷料 专注于慢性伤口治疗

科学家发明冷等离子喷射敷料 专注于慢性伤口治疗 为此,南澳大利亚大学(Uni SA)的研究人员研究了一种控制感染和促进愈合的新技术:一种由冷等离子电离气体激活的水凝胶。该研究的通讯作者 Endre Szili 说:"抗生素和银敷料常用于治疗慢性伤口,但两者都有缺点。抗生素的抗药性不断增加是一个全球性挑战,银引起的毒性也令人十分担忧。在欧洲,银敷料正逐渐被淘汰。"以前的研究已经证明了使用冷等离子电离气体促进伤口愈合的好处,即减少细菌负荷,并通过激活环境空气中的氧分子和氮分子产生活性氧和氮物种(RONS)。到目前为止,水凝胶在涂抹到伤口上之前已被等离子体产生的 RONS 所负载,但这一过程并不完美。"尽管最近在使用等离子活化水凝胶疗法(PAHT)方面取得了令人鼓舞的成果,但我们在为水凝胶加载临床使用所需的足够浓度的 RONS 方面仍面临挑战,"Szili 说。"我们采用了一种新的电化学方法来增强水凝胶的活化,从而克服了这一障碍。"研究人员使用聚乙烯醇(PVA)制作了水凝胶,因为这种凝胶已被广泛批准用于医疗保健领域,而且具有出色的机械和生物相容性。用氦等离子喷射器处理 PVA 水凝胶,使其活化,产生 RONS。8% 的 PVA 水凝胶被确定为 PAHT 敷料的最佳选择,因为它可以很容易地被等离子体产生的 RONS 激活,同时保持其结构完整性、保形性和膨胀能力。研究人员将水凝胶置于铝板上方,使等离子体羽流在处理过程中与水凝胶保持接触,然后比较了两种技术,以了解是否可以通过电化学方法提高 RONS 的产生:一种是通过断开铝板与接地导线的连接使水凝胶保持"浮动电位",另一种是将水凝胶"接地"。a)"浮动电位"和 b)"接地"配置下处理过程中的等离子射流照片 萨布林等人将等离子处理过的水凝胶培养三小时,研究过氧化氢(H2O2)和氧化亚氮(NO2-)的释放情况,这两种物质分别被用作总活性氧(ROS)和活性氮(RNS)的标记。研究人员发现,在等离子处理过程中将水凝胶接地可显著提高H2O2的产生,而在处理过程中对凝胶进行水合处理可进一步提高H2O2的产生。此外,等离子射流-水凝胶界面的湿度与H2O2生成的增加密切相关。至于 NO2-,接地增加了湿度的产生,而水合的影响可以忽略不计。在体外实验中,这种水凝胶能非常有效地控制大肠杆菌和绿脓杆菌的生长,而这两种细菌是糖尿病足溃疡中常见的细菌。研究人员表示,虽然这项研究的重点是糖尿病伤口,但该技术可用于治疗所有慢性伤口和内部感染。Szili说:"我们的PAHT技术的一大优势是,它可用于治疗所有伤口。这是一种环保安全的治疗方法,它利用空气和水中的天然成分来制造活性成分,活性成分会降解为无毒和生物兼容的成分"。下一步是进行临床试验,以优化电化学技术,用于治疗人类患者。今后,研究人员将研究如何利用这项技术,通过激活注入人体的水凝胶中的药物来治疗癌症肿瘤。Szili说:"活性成分可以长期输送,改善治疗效果,并有更大的机会穿透肿瘤。血浆在医疗领域有着巨大的潜力,而这只是冰山一角。"这项研究发表在《先进功能材料》杂志上。 ... PC版: 手机版:

封面图片

新设计大大延长了等离子体火炬的使用寿命

新设计大大延长了等离子体火炬的使用寿命 一项突破性设计将等离子体火炬的使用寿命从数天延长到数年,克服了重大的技术挑战,并可能因其更高的效率和可持续性而给多个行业带来革命性的变化。等离子体割炬是产生热等离子体的设备,因其能有效产生高温等离子体而在各行各业中举足轻重。它可应用于低碳冶金、粉末球化、碳材料制备和先进材料喷涂等多个领域。然而,其有限的使用寿命阻碍了其大规模应用。传统的固定阴极在耗尽后必须更换,导致寿命短、维护成本高。在这项研究中,研究人员开发了一种连续进给阴极系统,可以快速补充已磨损的阴极。这种操作消除了使用寿命的限制,使等离子火焰的运行寿命几乎无限。"设计克服了五大难关,"已经监督这项实验长达 160 个小时的高级工程师李军说,"这包括导电、导热、密封、水冷和连续推进机制。对于传统等离子火焰来说,160 小时标志着结束,但在这里,这仅仅是个开始。"这一重大进步推动了等离子体应用的产业化,开创了一个高效和可持续发展的新时代。编译自:ScitechDaily ... PC版: 手机版:

封面图片

《等离子体物理》 | 简介:等离子体物理这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深

《等离子体物理》 | 简介:等离子体物理这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和思考。每一页都充满了智慧和启发,是对知识渴望者的不二之选。 | 标签:#书籍 #等离子 #阅读 | 文件大小:NG | 链接:

封面图片

欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球

欧洲核子研究中心再现来自黑洞的物质:反物质等离子体火球 超大质量黑洞发射等离子体喷流的艺术家印象图,欧洲核子研究中心的科学家们现在已经在实验室中重现了这一场景。美国宇航局/JPL-加州理工学院这些所谓的相对论喷流被认为包含了由电子及其反物质等价物正电子组成的等离子体。但是,这种物质究竟是如何形成的,又有什么作用,很难通过天文观测和计算机模拟来测量。于是,欧洲核子研究中心的科学家们开始在实验室里制造他们自己的版本。利用高辐射材料(HiRadMat)设施,研究小组从超级质子同步加速器中捕获了 3000 亿个质子,并将它们喷射到石墨和钽制成的靶子上。这引发了一连串的粒子相互作用,产生了足够多的电子-正电子对来维持稳定的等离子状态。产生等离子体的一系列相互作用示意图 罗切斯特大学激光能量学实验室插图/Heather Palmer首先,质子撞击石墨中的碳原子核,产生的能量足以撞散其中的基本粒子。其中的中性粒子很快衰变为高能伽马射线。这些伽马射线随后与钽的电场相互作用,进而产生成对的电子和正电子。在这次试运行中,产生的电子-正电子对达到了惊人的 10 万亿个,足以让它开始表现得像一个真正的天体物理等离子体。"这些实验的基本理念是在实验室中重现天体物理现象的微观物理学,例如黑洞和中子星的喷流,"该研究的合著者吉安卢卡-格雷戈里(Gianluca Gregori)说。"我们对这些现象的了解几乎完全来自天文观测和计算机模拟,但望远镜无法真正探测微观物理,模拟也涉及近似。像这样的实验室实验是连接这两种方法的桥梁。"这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

封面图片

中国突破黑障通信中国已经建成的“临近空间高速目标等离子体电磁科学实验研究装置”是专门为突破黑障通信技术研制的大型实验装置,投入运

中国突破黑障通信 中国已经建成的“临近空间高速目标等离子体电磁科学实验研究装置”是专门为突破黑障通信技术研制的大型实验装置,投入运行以来在较短的时间内已经在地面实现了从L到Ka频段黑障现象的复现,提出了低频电磁波和动态自适应的抗黑障通信新方法。 实验结果表明:当等离子体覆盖通信天线时,系统能够实时根据驻波检测到等离子体的变化,使通信速率在4Mbps到250bps之间自动切换,换取了约40dB的额外增益,使得通信系统对等离子密度的耐受极限至少提高了一个数量级。 来源 via 标签: #黑障通信 频道: @GodlyNews1 投稿: @Godlynewsbot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人