中国“人造太阳”今年将挑战千秒量级高约束模式

中国“人造太阳”今年将挑战千秒量级高约束模式 据悉,中国开发的核聚变装置东方超环(EAST)被称为“人造太阳”,2007年通过验收,是中国科学院等离子体所自主设计、研制并拥有完全知识产权的磁约束核聚变实验装置,是世界上第一个非圆截面全超导托卡马克。该设备在2023年4月实现了高功率稳定的403秒稳态长脉冲高约束模等离子体运行,创造了托卡马克装置稳态高约束模运行新的世界纪录。EAST拥有类似太阳的核聚变反应机制,用来探索核聚变能源应用。核聚变是将两个质量轻的原子核“聚合”成为一个重原子核,我们知道能量是守恒的,“消失”的质量会转变为巨大的能量,而且能量比核裂变更高。聚变能源具有无限、经济、可计划、清洁、安全等诸多优点,是目前科学发展水平下人类能够掌握的终极能源形式,甚至会推动人类文明进入下一个发展阶段。 ... PC版: 手机版:

相关推荐

封面图片

403秒!中国“人造太阳”获重大突破

403秒!中国“人造太阳”获重大突破 第122254次实验!4月12日21时,中国有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现稳态高约束模式等离子体运行403秒,对探索未来的聚变堆前沿物理问题,提升核聚变能源经济性、可行性,加快实现聚变发电具有重要意义。 “这次突破的主要意义在于‘高约束模式’。”中科院合肥物质科学研究院副院长、等离子体物理研究所所长宋云涛说,高约束模式下粒子的温度、密度都大幅度提升,“这为提升未来聚变电站的发电效率,降低成本奠定了坚实物理基础。” 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

中国掌握可控核聚变高约束先进控制技术

中国掌握可控核聚变高约束先进控制技术 中核集团宣布新一代人造太阳“中国环流三号”取得重大科研进展,首次实现 100 万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。 可控核聚变是目前认识到的能够最终解决人类能源问题的重要途径之一,具有原料充足、经济性能优异、安全可靠、无环境污染等优势,主要的方式有 3 种:引力约束、惯性约束和磁约束。 2022 年 12 月 5 日,美国劳伦斯利佛摩国家实验室(LLNL)首次实现能量净收益的可控核聚变。该实验通过 192 道激光聚焦目标提供 2.05 兆焦耳的能量,从而超过聚变阈值,产生 3.15 兆焦耳的聚变能量输出。 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

中核集团:中国掌握可控核聚变高约束先进控制技术

中核集团:中国掌握可控核聚变高约束先进控制技术 8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。  为实现聚变能源,需要提升等离子体综合参数至聚变点火条件。磁约束核聚变中的高约束模式(H模)是一种典型的先进运行模式,被选为正在建造的国际热核聚变试验堆(ITER)的标准运行模式,能够有效提升等离子体整体约束性能,提升未来聚变堆的经济性,相较于普通的运行模式,其等离子体综合参数可提升数倍。

封面图片

中核集团称掌握可控核聚变高约束先进控制技术

中核集团称掌握可控核聚变高约束先进控制技术 中国核工业集团有限公司称,已掌握可控核聚变高约束先进控制技术。 据澎湃新闻报道,星期五(8月25日)下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新中国磁约束聚变装置运行纪录。 中核集团称,这是中国核聚变能开发进程中的重要里程碑,标志着磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。 中核集团称,可控核聚变作为面向国家重大需求的前沿颠覆性技术,具有资源丰富、环境友好、固有安全等突出优势,是目前认识到的能够最终解决人类能源问题的重要途径之一,对中国经济社会发展、国防工业建设具有重要战略意义。

封面图片

国际热核聚变实验堆计划巨型环磁交付完成 明年启动实验

国际热核聚变实验堆计划巨型环磁交付完成 明年启动实验 ITER是一个由35个国家合作建造的托卡马克项目,旨在测试核聚变作为能源的可行性。托卡马克是一个甜甜圈形状的容器,内部会产生巨大的螺旋型磁场,通过聚变反应燃烧等离子体来产生能量。核聚变是指两个或两个以上轻原子的原子核结合形成一个新的原子核的反应,在这个过程中释放出大量能量。这与核裂变不同,后者通过分裂重原子核释放能量并产生放射性废物。核聚变自然发生在恒星内部,为恒星提供能量,但在地球上却无法自然发生。然而,物理学家和工程师可以在实验室中使用托卡马克装置或激光实现核聚变。虽然听起来很简单,但真正的难点在于如何实现核聚变反应,使其产生的能量超过引发反应所需的能量,理论上这将能够提供无限的能源。托卡马克通过磁铁来控制和约束等离子体。ITER的环形磁场线圈将被冷却到零下269摄氏度,使其成为超导体。这些17米高的线圈将围绕在装有等离子体的甜甜圈形状真空容器周围,使ITER科学家能够控制真空容器内的聚变反应。ITER实验堆将比其他任何托卡马克装置都要大,其中央螺线管磁铁由6个110吨重的磁铁模块组成。整个托卡马克装置的重量将达到惊人的23000吨,磁体产生的磁场将比地球磁场强30万倍。等离子体将被加热到1.5亿摄氏度,是太阳核心温度的10倍。根据上个月在第34届ITER理事会上提出的新基准,ITER预计将于明年启动首次等离子体实验,第一次聚变反应计划在2035年进行。更新后的具体时间表将在本周三的新闻发布会上公布。ITER项目由前苏联领导人戈尔巴乔夫和美国前总统里根于1985年首次提出,但项目直到2005年才最终确定。近20年后,托卡马克装置仍未投入实验。据报道,ITER的成本自启动以来已经增长了四倍,最近估计项目耗资超过220亿美元。技术缺陷和新冠疫情都导致了项目的延迟。人们老生常谈的是,核聚变能成为能源永远是50年之后的事情。它似乎总是超越了当前的技术,人们总是被告知“这次会不一样”。ITER项目的目的是验证核聚变能源的技术可行性,但重点并不在于经济可行性。对于人类来说,经济可行性是另一个棘手问题。核聚变发电不仅要成为一种技术上可行的能源,还要成为能并入电网的能源。核聚变被视为能源物理学的圣杯,是结束人类对化石燃料依赖的一种方式。但它不会很快到来,不足以解决当前日益恶化的气候危机。换句话说,即使ITER项目在工程方面取得了重大突破,也只是解决了问题的一部分。正如美国国家点火装置在2022年在技术上实现反应产生的能量大于促使反应发生的能量那样,人类离实现聚变能源越来越近了,但还有很长的路要走。(辰辰) ... PC版: 手机版:

封面图片

5月28日,中科院合肥物质科学研究院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现可重复

5月28日,中科院合肥物质科学研究院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现可重复的1.2亿摄氏度101秒和1.6亿摄氏度20秒等离子体运行,将1亿摄氏度20秒的原纪录延长了5倍。科研人员称新纪录进一步证明核聚变能源的可行性,也为迈向商用奠定物理和工程基础。 (新华社)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人