隐形杀手:大肠杆菌的隐性变异如何令其到达致命程度

隐形杀手:大肠杆菌的隐性变异如何令其到达致命程度 昆士兰大学分子生物科学研究所的 Mark Schembri 教授和 Nhu Nguyen 博士以及 Mater Research 的 Sumaira Hasnain 副教授在大肠杆菌的纤维素制造机制中发现了这一突变。Schembri 教授说,这种突变为受影响的大肠杆菌开了绿灯,使其能够进一步扩散到体内,感染更多器官,如肝脏、脾脏和大脑。"'好'细菌能制造纤维素 而'坏'细菌不能"Schembri 教授说:"我们的发现解释了为什么一些大肠杆菌会导致危及生命的败血症、新生儿脑膜炎和尿路感染 (UTI),而另一些大肠杆菌却能在我们体内存活而不造成危害。"细菌的细胞表面会产生许多物质,这些物质可以刺激或抑制宿主的免疫系统。新发现的突变阻止了大肠杆菌制造细胞表面碳水化合物纤维素,这导致宿主肠道炎症加剧。结果是肠道屏障被破坏 细菌就能在体内传播。植物、藻类和"好"细菌能制造碳水化合物纤维素,而"坏"细菌不能。研究小组在复制人类疾病的模型中发现,无法产生纤维素的细菌毒性更强,因此会导致更严重的疾病,包括脑膜炎中的脑部感染和尿毒症中的膀胱感染。大肠杆菌是与细菌抗生素耐药性相关的最主要病原体。寻找预防感染的新方法Hasnain副教授说,了解细菌如何从肠道储藏库传播到身体其他部位,对于预防感染非常重要。她说:"我们的发现有助于解释为什么某些类型的大肠杆菌 变得更加危险,并为不同类型的高毒性和入侵性细菌的出现提供了解释。"大肠杆菌是与细菌抗生素耐药性相关的最主要病原体。仅在 2019 年,全球就有近 500 万人的死亡与细菌的抗生素耐药性有关,其中大肠杆菌导致了 80 多万人死亡。随着对所有现有抗生素都有抗药性的超级细菌的威胁在全球范围内不断增加,找到预防这种感染途径的新方法对于减少人类感染数量至关重要。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用 来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将 700 多份新的血液样本与近 5000 份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E. coli)的传播。最近发表在《柳叶刀微生物》(Lancet Microbe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过 40% 的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从 8.4% 到 92.9% 不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR 细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(Anna Pöntinen)博士是威康-桑格研究所(Wellcome Sanger Institute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(Julian Parkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)和挪威奥斯陆大学的尤卡-科兰德(Jukka Corander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究表明宠物狗或猫可能正在传播致命的超级细菌

新研究表明宠物狗或猫可能正在传播致命的超级细菌 将于 4 月 27 日至 4 月 30 日在西班牙巴塞罗那举行的 ESCMID 全球大会上公布的最新研究表明,宠物狗和宠物猫在很大程度上助长了耐抗生素细菌的传播。研究发现,在葡萄牙和英国,患病猫狗和它们健康的主人之间存在耐多药细菌传播的证据,这引发了人们对宠物可能成为耐药性贮藏库,从而助长对重要药物的耐药性传播的担忧。全世界的抗生素耐药性正达到危险的高水平。世界卫生组织(WHO)将抗生素耐药性列为人类面临的最大公共卫生威胁之一。里斯本大学兽医学院动物健康跨学科研究中心抗生素耐药性实验室的首席研究员朱莉安娜-梅内塞斯(Juliana Menezes)说:"最新研究表明,抗菌药耐药性(AMR)细菌在人类和动物(包括宠物)之间的传播对维持耐药性水平至关重要,这对传统观念提出了挑战,即人类是社区中AMR细菌的主要携带者。了解并解决AMR细菌从宠物向人类传播的问题,对于有效对抗人类和动物群体的抗菌药耐药性至关重要"。梅内塞斯女士及其同事对猫狗及其主人的粪便和尿液样本以及皮肤拭子进行了检测,以确定是否存在对普通抗生素耐药的肠杆菌(包括大肠杆菌和肺炎克雷伯菌在内的一大类细菌)。他们重点研究了对第三代头孢菌素(用于治疗脑膜炎、肺炎和败血症等多种疾病,被世界卫生组织列为人类医学最重要的抗生素之一)和碳青霉烯类(其他抗生素失效时的最后一道防线)产生抗药性的细菌。这项前瞻性纵向研究涉及葡萄牙 43 个家庭的 5 只猫、38 只狗和 78 个人,以及英国 22 个家庭的 22 只狗和 56 个人。所有人类都很健康,所有宠物都患有皮肤和软组织感染 (SSTI) 或尿路感染 (UTI)。宠物与人类之间传播的证据在葡萄牙,有一只狗(1/43,2.3%)感染了产生 OXA-181 的耐多药大肠埃希菌菌株。OXA-181 是一种对碳青霉烯类产生抗药性的酶。3 只猫、21 只狗(24/43 只宠物,55.8%)和 28 位饲主(28/78 位饲主,35.9%)携带了产生 ESBL/Amp-C 的肠杆菌。这些细菌对第三代头孢菌素具有耐药性。在五户家庭中,一户养猫,四户养狗,宠物和主人都携带了产生 ESBL/AmpC 的细菌。基因分析表明菌株相同,表明细菌在宠物和主人之间传播。在这五个家庭中,有一个家庭的狗和主人也带有相同的抗生素耐药肺炎克雷伯菌株。在英国,有一只狗(1/22 只宠物,14.3%)被两株产生 NDM-5 β-内酰胺酶的耐多药大肠杆菌感染。这些大肠杆菌对第三代头孢菌素、碳青霉烯类和其他几类抗生素具有耐药性。从 8 只狗(8/22 只宠物,36.4%)和 3 位主人(3/24 位主人,12.5%)身上分离出了产 ESBL/AmpC 的肠杆菌。在两个家庭中,狗和主人都携带了同样的 ESBL/AmpC 产菌。然而,在葡萄牙的三个家庭中,ESBL/AmpC 产细菌检测呈阳性的时间强烈表明,至少在这些情况下,细菌是由宠物(两只狗和一只猫)传染给人的。建议和结论梅内泽斯说:"我们的发现强调了将饲养宠物的家庭纳入监测抗生素耐药性水平的国家计划的重要性。更多地了解宠物的抗药性将有助于制定知情的、有针对性的干预措施,以保障动物和人类的健康。"人与宠物之间可以通过抚摸、接触或亲吻以及处理粪便来传播细菌。为防止传播,研究人员建议主人养成良好的卫生习惯,包括在抚摸猫狗和处理其排泄物后洗手。当饲养的宠物不舒服时,可以考虑将它们隔离在一个房间里,以防止细菌在整个房子里传播,并彻底清洁其他房间。实验中所有猫狗的感染都得到了成功治疗,猫狗的主人没有发生感染,因此不需要治疗。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

增强型棉绷带不使用抗生素也能杀死细菌

增强型棉绷带不使用抗生素也能杀死细菌 Tamer Uyar 副教授(左)和博士生 Mohsen Alishahi 检查棉基材料这种物质天然存在于指甲花叶中,以其抗氧化、消炎和抗菌特性而闻名。然而,由于其疏水(拒水)特性,它不容易与液体溶液混合并悬浮在其中。这就限制了它的生物利用度,使其不能被人体很好地吸收。环糊精是一种碳水化合物,具有中空的内腔和亲水性(吸水性)的外表面。通过"隐藏"在环糊精分子中,lawsome分子能够被彻底混合到液体溶液中。随后,将这种lawsome/环糊精溶液与无毒的羟丙基纤维素结合在一起。接下来,研究人员利用静电纺丝技术,在普通化妆棉上均匀地涂上一层这种混合物。涂层中的羟丙基纤维素现在变成了纳米级纤维素纤维,从而提高了溶液的表面体积比。在实验室与纯lawsone一起进行测试时,发现涂层棉花对革兰氏阴性和阳性细菌的抗生素作用更强。它对大肠杆菌和葡萄球菌的效果更好,能有效根除这两种细菌。Alishahi 说:"伤口敷料应为促进伤口愈合和预防感染提供适宜的环境。这种敷料使用棉花、环糊精和 Lawsone 等纯天然材料,具有全面的抗氧化和抗菌活性,可以促进伤口愈合和预防感染。"关于这项由棉花公司资助的研究的论文最近发表在《国际制药学杂志》上。 ... PC版: 手机版:

封面图片

简单细菌实验揭示:我们的下一种抗生素可能已经毫无用处

简单细菌实验揭示:我们的下一种抗生素可能已经毫无用处 图:青霉菌,青霉素来自它只是古代的人们并不清楚这些疾病(感染)是细菌引起的,也并不清楚是在用抗生素对抗细菌,只是他们正巧发现了这种疾病可以用这种物质治疗,并记录了下来而已。人类真正意义上的第一种抗生素是1909年出现的,当时德国医生保罗·埃利希 (Paul Ehrlich) 发现了一种叫做砷凡纳明的化学物质,它可以有效治疗梅毒。之所以说这是第一种抗生素,是因为当时的保罗·埃利希已经有了抗生素的概念了,就是找到特定化学物质,它对病原体细菌细胞有效,而对其它细胞无效。现在流传的故事是,保罗·埃利希发现某些化学染料会使某些细菌细胞着色,但不会使其他细菌细胞着色,所以他坚信存在某种化学物质只对特定细菌有效,而不会伤害正常细胞。自从抗生素诞生以来,人们就发现,细菌对抗生素的耐药性是越来越强了,所以你经常会看到“抗生素滥用”、“抗生素制造超级细菌”之类的报道。不过,我现在要告诉你的是,抗生素对抗细菌的时代可能还有一个问题,就是当一个细菌完全适应某种抗生素,以至于我们无法用已有抗生素对抗它时,下一种抗生素可能也会不起作用。至于为什么会是这样,就要回答一个困扰人们一个多世纪,甚至直到今天都有争议的问题:细菌的变异是随机的还是有目的的?或者说,细菌是先遇到抗生素后才会产生抗药性,还是说在没有遇到抗生素之前,也会产生抗药性?有一个简单的实验可以解释这个问题,细菌抗药性可能不需要遇到抗生素也会产生,而且现在越来越的实验证实了这点。1943 年,两个科学家萨尔瓦多·卢里亚 (Salvador Luria)马克斯·德尔布吕克 (Max Delbrück)发明了这个实验。图:噬菌体模型这个实验是怎么回事?到底是噬菌体的存在才让细菌产生相应噬菌体抗体,还是说噬菌体抗体只是细菌随机突变的一个幸运结果,上个世纪这个问题存在巨大的争议。为了解决这个争议,卢里亚和德尔布吕克开始合作,但是经过几个月的实验,他们都没有成功。据信,1943年1月16 日晚上,卢里亚从一位同事在老虎机上赢得大奖而得到灵感(估计得奖的那哥们很兴奋逢人就说),才设计了这个经典实验。卢里亚找来一些试管和培养皿,每个试管里都装满了适合大肠杆菌繁殖的营养肉汤,而每个培养皿里都装有噬菌体。然后他将大肠杆菌放入试管中培养,让它在里面自由繁殖,很快细菌浓度就飙升,并导致每个试管都变得浑浊(一天之后)。图:噬菌体攻击细菌然后,卢里亚将每个试管中的大肠杆菌转移到那些充满噬菌体的培养皿中,并在一天之后,计算每个培养皿中耐药细菌菌落的数量。上述争议的两个观点会产生两种不同结果,并体现在耐药细菌菌落的数量上。第一种:如果细菌只通过与噬菌体相互作用来产生抗性,那么试管中的细菌将不会有抗噬菌体的变种;另一方面,当这些细菌被转移到含有噬菌体的培养皿中时,只有少数细菌会产生耐药变种,之后每一种抗噬菌体的变种都会生长成一个菌落,但剩下的细菌会死于感染。其实,这种情况甚至都可以观察出来,那就是所有细菌转移到培养皿中之后,它都会先经历变得清澈(因为细菌减少),然后再开始变得浑浊,它们变清澈的情况会一样,只是变浑浊的情况会不太一样,因为每个样本的抗性何时出现不确定。第二种:如果细菌不是与噬菌体相互作用来产生抗性,那么试管中的一些细菌已经是抗噬菌体的变种。早期出现抗性突变(红色)将产生大量变体个体,而后期则很少?Qi Zheng在这种情况下,如果开始的第一代细菌就是变异的抗性变种,那么当它转移到培养皿中时,至少有一半的细菌会在后代中产生抗性。如果在第二代中发生变异,那么至少八分之一的细菌产生抗性,以此类推。如果你不太理解前面的数据,只要了解,在这种情况下,晚期突变发生得更频繁(因为细菌数量大),但产生的抗性变异却更少,而早期突变很少发生(因为细菌数量少),但会产生大量的具有抗性的变异个体。这个和老虎机的得奖情况很像,小额奖金面额小但频繁,而大额奖金金额大但很少发生,卢里亚估计就是这样得到灵感的。大肠杆菌转移到培养皿之后的情况@Qi Zheng卢里亚最后统计的结果是第二种,(第二天)大多数培养皿中没有或只有少量的抗噬菌体菌落,但有几个培养皿中含有大量的抗噬菌体菌落最初几代就获得抗性。这意味着一些细菌样本在与培养皿中的噬菌体相互作用之前,就已经产生了抗噬菌体菌落,所以并不是噬菌体导致了抗性的发生。你可能已经发现了,我们这里好像只提到卢里亚,说好的两人合作呢。其实,实验完成后,卢里亚给德尔布吕克发了一张纸条,要求他检查自己的工作,不过后面两人共同完成了论文,描述了实验方案和测量细菌突变率的理论框架。我们现在看起来这个实验很简单,但其实它至今都具有现实意义,因为它意味着细菌可以对尚未开发出来的抗生素产生耐药性,他们两人也因此获得了1969年的诺贝尔生理学或医学奖。之后,其他科学家也用相似的方法,用青霉素和结核病药物代替噬菌体,实验结果也是一样的,一些样本可以在完全没有接触过这些抗生素的情况下天生具有抗性。所以,不要觉得抗生素永远可靠,如果现在常用的抗生素已经不再有用,那么新的抗生素出现,也不意味着它对所有人都有效。 ... PC版: 手机版:

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别 可有效对抗耐药细菌 抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the USA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而 LpxH 蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI: 10.1073/pnas.2317274121编译来源:ScitechDaily ... PC版: 手机版:

封面图片

衞生防护中心:公众对抗生素耐药性认知不足 进食卤味及刺身等风险增

衞生防护中心:公众对抗生素耐药性认知不足 进食卤味及刺身等风险增 #港闻 衞生防护中心指,公众对抗生素耐药性认知不足,进食卤味、刺身及寿司等食品的耐药性肠道杆菌感染个案数字增加。 (11/17/17:23)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人