研究发现火星会对地球气候产生意想不到的影响 每个周期大约240万年

研究发现火星会对地球气候产生意想不到的影响 每个周期大约240万年 火星与地球同属于内太阳系,但火星与地球的距离非常远并且火星的质量也比较小,一般认为火星对地球的引力只有太阳对地球引力的百万分之一。然而就是这极其微小的引力,竟然也产生了蝴蝶效应,澳大利亚悉尼大学地球物理学家迪特马尔・穆勒 (Dietmar Müller、论文合著者) 称,火星对地球气候的影响类似于蝴蝶效应,尽管这颗红色星球距离太远,无法对我们的世界产生巨大的引力影响,但是有太多的音速甚至可以放大细微的变化。6500 万年的深海沉积记录证据:通过深入研究超过 6500 万年的深海沉积记录,研究人员分析了地球洋流行为的历史,研究人员对近 300 个岩心进行了采样,记录了随时间的变化情况。沉积中的中断表明存在剧烈的深海洋流 (一般情况下在深海中海水是趋于平静的),而连续的沉积则代表了较为平静的环境。研究团队发现,这些洋流的强度在 240 万年的周期里 (天文周期) 中不断增强和减弱,将这种波动于天文事件进行比较,研究人员发现了一种意想不到的联系:每个周期都与地球和火星之间引力相互作用的记录一致。火星对地球轨道的影响:论文主要作者、悉尼大学沉积学家 Adriana Dutkiewicz 表示,我们很惊讶地在深海沉积数据中发现了这些与 240 万年的循环,只有一种方式可以解释它们,它们与火星和地球绕太阳运行的相互作用周期有关。迪特马尔・穆勒解释了这种微弱的轨道共振:地球和火星在自己轨道中绕着太阳公转,而地球和火星同在内太阳系中 (从宇宙尺度上说距离还是比较近的),它们的引力场在共振过程中相互作用,这种共振改变了地球公转的偏心率,从而改变地球与太阳之间的距离,在太阳辐射较多的时期,地球气候变暖,随着气候变暖,强劲的洋流数量也随之增加。研究人员将这些洋流或者说涡流描述为巨大的漩涡,它们经常延伸到深海海底并侵蚀,导致大量沉积物在雪堆般的岩壁上积累。需要说明的是,这些自然的、引力场引起的气候周期与当前快速的全球变暖无关,当前的全球变暖主要是温室气体排放的产物,不过长期研究涡流对气候变暖的反应可以为科学家提供关于气候变化如何影响海洋环流的重要见解。随着气候变化,科学家们认为一个被称为大西洋经向翻转环流 (AMOC) 的重要洋流系统可能很快就会崩溃,这个洋流系统向北输送温暖的海水,向南输送冷水。AMOC 可能会在本世纪末崩溃,但也有研究称 AMOC 可能会在 2025 年就崩溃,这是气候变暖带来的潜在重大影响之一。当然也有质疑声音:澳大利亚新南威尔士大学的研究海洋环流的马修英格兰并未参与这项研究,他对这种说法持怀疑态度,因为火星对地球的引力非常微弱,无法确定火星应该对这种循环负责,另外木星对地球也有更强的引力场 (木星距离地球更远、但质量更大因此引力更强)。英国国家海洋学中心的海洋系统建模副主任乔尔希尔斯基对此也有些质疑,他认为研究团队的结果是推测性的没有实际证据,而且尽管过去几十年的涡流活动不断增强,但卫星观测显示,这些洋流并不总是能抵达海底并产生一些作用。Adriana Dutkiewicz 补充说明跨越 6500 万年的深海数据表明,温暖的海洋有更活跃的深层环流,即使 AMOC 减慢或者完全停止,240 万年的周期性环流也会阻止海洋变得平静 (即减少循环,循环对海洋生态系统、地球气候来说至关重要)。论文地址: ... PC版: 手机版:

相关推荐

封面图片

海洋学家借助冰河时期沉积物预测气候未来

海洋学家借助冰河时期沉积物预测气候未来 当冰期过渡到气候变暖时,海洋会通过释放深海中储存的碳来调节大气中的二氧化碳。这项研究表明,从上一个冰期到今天,全球海洋氧气含量与大气二氧化碳之间存在着惊人的相关性随着气候变暖,深海的碳释放量可能会增加。"这项研究揭示了南大洋在控制全球海洋氧气库和碳储存方面的重要作用,"首席研究员、杜兰大学科学与工程学院地球与环境科学助理教授 Yi Wang 说。她专攻海洋生物地球化学和古海洋学。"这将对了解海洋,尤其是南大洋,未来将如何动态地影响大气中的二氧化碳产生影响。"Wang与伍兹霍尔海洋学研究所(Woods Hole Oceanographic Institution)的同事一起进行了这项研究,该研究所是世界领先的致力于海洋研究、探索和教育的独立非营利组织。在2023年加入杜兰大学之前,她曾在该研究所工作。研究小组分析了从阿拉伯海采集的海底沉积物,以重建数千年前全球海洋的平均含氧量。他们精确测量了沉积物中金属铊的同位素,这表明沉积物形成时全球海洋中溶解了多少氧气。Wang说:"对冰川-间冰期转换过程中这些金属同位素的研究以前从未有过,这些测量结果让我们基本上能够重现过去。"铊同位素比率显示,与目前较温暖的间冰期相比,上一个冰期全球海洋总体上失去了氧气。他们的研究显示,在北半球突然变暖期间,全球海洋出现了长达千年的脱氧现象,而在从上一个冰期过渡到今天的突然降温期间,海洋获得了更多的氧气。研究人员将观测到的海洋氧气变化归因于南大洋的演变过程。"这项研究首次展示了地球从上一个冰川期过渡到过去一万年气候变暖时期全球海洋含氧量的平均演变情况,"世界卫生组织科学研究所副科学家、该研究的共同作者苏妮-尼尔森(Sune Nielsen)说。"这些新数据确实意义重大,因为它们表明南大洋在调节大气二氧化碳方面发挥着至关重要的作用。鉴于高纬度地区是受人为气候变化影响最严重的地区,这些地区首先对大气中的二氧化碳也产生了巨大影响,这令人不安。" ... PC版: 手机版:

封面图片

研究发现气候变化略微延长了一天的长度

研究发现气候变化略微延长了一天的长度 根据发表在《Nature Geoscience》和 PNAS 期刊上的研究,气候变化影响了地球自转,略微延长了一天的长度毫秒级的变化。苏黎世联邦理工学院研究人员的模型和观测发现,气候变化和全球暖化对地球自转速度的影响将大于月球产生的影响,而过去数十亿年月球的引力作用决定了地球一天长度的增加。气候变化导致格陵兰岛和南极洲的冰川融化。极地冰水流入世界海洋,这种质量的转移影响了地球自转。因为水从两极流向了低纬度地区,减缓了自转速度,气候变化将一天的长度从目前的 86,400 秒增加了几毫秒。月球引发的潮汐摩擦曾是地球自转减缓的主要因素,但研究人员发现,如果人类排放更多的温室气体,那么它对地球自转的影响将会大于月球。研究人员指出,人类对地球的影响比我们意识到的要大,这意味着也有更多的责任。 via Solidot

封面图片

意想不到的甲烷排放挑战气候变化模型 比我们想象的要广泛得多

意想不到的甲烷排放挑战气候变化模型 比我们想象的要广泛得多 哥本哈根大学的一位研究人员在加拿大三座冰川的融水中发现了出乎意料的高甲烷含量,这挑战了人们对冰川甲烷排放的现有看法。这些发现表明,冰川下甲烷的产生比以前认为的更为普遍,从而提出了有关冰川地区碳循环及其对气候变化影响的重要问题。资料来源:Sarah Elise Sapper娴熟的飞行员在陡峭的育空山间表演空中杂技,直升机的旋翼在空中旋转,博士生莎拉-埃莉斯-萨伯(Sarah Elise Sapper)正带领着她的首次野外考察队深入加拿大西北部山区的中心地带。从直升机的窗口,她的目光落在唐杰克冰川的锯齿状边缘:融水像漩涡一样从冰层下涌出。着陆后不久,莎拉在第一次尝试中就发现了一个不同寻常的发现。在启动她的便携式甲烷分析仪几秒钟后,空气中明显富含甲烷,而且很快就找到了罪魁祸首。在采集融水样本时,她测得的甲烷浓度远远超出了预期。"我们预计融水中的甲烷值会很低,因为人们认为冰川甲烷的排放需要较大的冰体,如巨大的冰原。但结果恰恰相反。我们测量到的甲烷浓度比大气中的甲烷浓度高出 250 倍,"哥本哈根大学地球科学与自然资源管理系的 Sarah Elise Sapper 解释说。野外考察队腾空而起,继续前往另外两座高山冰川克鲁内冰川和达斯蒂冰川。在分别测量了这两个冰川融水中的甲烷含量后,初步发现并不只是异常现象。在这里,测量结果也显示甲烷浓度很高。在冰层下面的某个地方,存在着以前未知的气体来源。证明了广泛排放甲烷的可能性地球科学与自然资源管理系副教授 Jesper Riis Christiansen 说:"这一发现令人惊讶,并在这一研究领域提出了几个重要问题。"这篇研究文章的合著者克里斯蒂安森认为,这一发现表明,甲烷可能存在于世界上许多冰川之下,而这些冰川迄今为止一直被忽略。他说:"当我们突然发现,即使是与冰原相比规模很小的山地冰川也能形成和释放甲烷时,我们对地球极端环境中碳循环的基本认识就有了新的拓展。冰下甲烷的形成和释放比我们想象的更全面、更广泛。"Sarah Elise Sapper 指挥直升机驾驶员降落在冰川边缘附近,测量融水漩涡中流出的甲烷。图片来源:萨拉-埃莉斯-萨伯到目前为止,人们普遍认为融水中的甲烷只能在像格陵兰冰原这样的大冰块下的无氧环境中发现。研究人员认为,甲烷的产生是生物性的,是有机碳源(如史前海洋生物的沉积物、土壤、泥炭或森林)在缺氧的情况下被微生物分解时产生的,就像我们从湿地中了解到的那样。因此,高山冰川排放甲烷是令人惊讶的。冰川表面的融水在流向冰层底部时富含氧气。研究人员发现,所有这些氧气在途中的某个地方被耗尽,从而在这些高山冰川下形成了无氧环境,这让我们感到非常惊讶。更令人惊讶的是,这种情况达到了如此程度,微生物开始产生甲烷,我们可以在冰川边缘流出的水中观察到高浓度的甲烷。Jesper Riis Christiansen 补充说:"Sarah 的发现改变了我们的基本认识,让我们重新认识了一些关键的作用机制。"未来气候的不确定作用研究人员认为,加拿大的研究结果并没有立即引起人们更加关注其对气候变化的影响。不过,这一结论可能只是暂时的。"甲烷在地球变暖中扮演着重要角色。甲烷的挑战在于它是一种超强的温室气体,排放量的增加将加速气候变暖。从全球角度来看,我们可以利用大气中甲烷的同位素来测量排放到大气中的甲烷数量,并大致确定甲烷的来源。目前,来自地球上冰雪覆盖地区(包括冰原和冰川)的甲烷并没有增加,"Jesper Riis Christiansen 解释说。不过,他强调,测量结果无法区分来自冰川地区的甲烷和来自湿地的甲烷。因此,这些数字可能具有欺骗性。而且,融化的影响仍是未知数。Jesper Riis Christiansen 认为,需要对调查结果保持警惕。"Sarah测量的三个地点是随机选择的,因为那里有研究站和直升机,但在这三个地点都发现了甲烷。这本身就是一个很好的理由,让我们更好地了解这个地区。我们不知道的事情太多了,冰川融化暴露了数千年来一直隐藏着的未知环境。"杰斯珀-里斯-克里斯蒂安森(Jesper Riis Christiansen)说:"实际上,没有人知道排放物会有怎样的表现。"他希望,更好地了解冰川下的甲烷行为也将帮助研究人员更好地了解湿地释放甲烷的机制,从而有助于制定通过氧化作用(例如通过使用某些类型的土壤)从大气中清除甲烷的解决方案。编译自:ScitechDaily ... PC版: 手机版:

封面图片

地球过去的极端高温事件导致深海环流减少 预示未来气候混乱

地球过去的极端高温事件导致深海环流减少 预示未来气候混乱 在最近发表在《美国国家科学院院刊》上的这项研究中,研究人员利用从古代深海沉积物中发现的贝壳化石,发现了 5000 万年前传送带是如何应对极端高温事件的。当时的地球气候与本世纪末预测的情况相似,如果不采取重大行动减少碳排放的话。海洋在调节地球气候方面发挥着至关重要的作用。它们将赤道的暖水向南北两极流动,平衡地球的温度。如果没有这个循环系统,热带会更热,而两极则会更冷。这一系统的变化与重大和突然的气候变化有关。此外,海洋在清除大气中的人为二氧化碳方面起着至关重要的作用。第一作者、加州大学地球与行星科学系副主任桑德拉-柯特兰-特纳(Sandra Kirtland Turner)说:"海洋是目前地球表面最大的碳库。""今天,海洋中含有近 40000 亿吨碳,是大气中碳含量的 40 多倍。海洋还吸收了大约四分之一的人为二氧化碳排放量,"Kirtland Turner 说。"如果海洋环流减慢,海洋对碳的吸收也会减慢,从而增加留在大气中的二氧化碳量。"_ueditor_page_break_tag_有孔虫贝壳帮助科学家拼凑出始新世时期的海洋运动图景,当时大气中的高碳含量导致海水交换速度减慢。资料来源:Marci Robinson,美国地质调查局以前的研究已经测量了地球较近地质时期海洋环流的变化,如上一个冰河时期的变化;但是,这些变化并不能近似地反映当今大气中二氧化碳的水平或地球变暖的情况。其他研究提供了第一个证据,表明深海环流,特别是北大西洋的环流已经开始减缓。为了预测海洋环流如何应对温室气体导致的全球变暖,研究小组将目光投向了始新世早期,即大约4900万年前到5300万年前。当时的地球比现在要温暖得多,在高热基线上,二氧化碳和温度会出现峰值,这种峰值被称为"高热"(hyperthermals)。在此期间,深海的温度比现在高出 12摄氏度。在远古时期,海洋的温度又上升了 3 摄氏度。柯特兰-特纳说:"尽管人们对高热事件的确切原因还存在争议,而且它们发生在人类出现之前很久,但这些高热事件是我们对未来气候变化的最好模拟。"加州大学河滨分校的 Sandra Kirtland Turner 和海洋岩芯沉积物样本。图片来源:综合大洋钻探计划有孔虫:古代海洋的微小指标通过分析来自全球不同海底地点的微小贝壳化石,研究人员重建了这些过热事件期间的深海环流模式。这些贝壳来自名为有孔虫的微生物,有孔虫生活在世界各地的海洋中,包括海面和海底。它们的大小与句末的句号差不多。柯特兰-特纳说:"生物在制造外壳的过程中,会吸收海洋中的元素,我们可以测量这些外壳的化学成分差异,从而广泛地重建有关古代海洋温度和环流模式的信息。"贝壳本身由碳酸钙构成。碳酸钙中的氧同位素是生物生长的水温和当时地球上冰量的指标。研究人员还研究了贝壳中的碳同位素,这反映了采集贝壳的海水的年龄,或海水与海洋表面隔离的时间。通过这种方法,他们可以重建深层海水的运动模式。有孔虫不能进行光合作用,但它们的外壳能显示附近其他生物(如浮游植物)光合作用的影响。光合作用只在表层海洋中进行,因此最近在表层的水具有富含碳-13的信号,当这些水沉入深海时,这种信号就会反映在贝壳上。相反,长期与地表隔绝的水,随着光合生物残骸的下沉和腐烂,积累了相对较多的碳-12。因此,与'年轻'的水相比,老水的碳-12含量相对较多。气候模型和现代预测科学家经常利用计算机气候模型对当今的海洋环流进行预测。他们利用这些模型来回答这样一个问题:"随着地球不断变暖,海洋会发生怎样的变化?"该研究小组同样利用模型模拟了远古海洋对气候变暖的反应。然后,他们利用有孔虫贝壳分析来帮助检验气候模型的结果。在始新世时期,大气中的二氧化碳含量约为百万分之 1,000 (ppm),这导致了当时的高温。如今,大气中的二氧化碳含量约为百万分之 425。然而,人类每年向大气中排放近 370 亿吨二氧化碳;如果这种排放水平持续下去,到本世纪末可能会出现与早始新世类似的情况。因此,当务之急是尽一切努力减少排放。她说:"这不是一个全有或全无的情况。在碳排放问题上,每一点渐进的变化都很重要。即使是二氧化碳的少量减少,也会减少对自然界的影响、生命损失和变化。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

海洋生物学家在海底热液喷口与锰结核区发现意想不到的生物多样性

海洋生物学家在海底热液喷口与锰结核区发现意想不到的生物多样性 科学家们通过对海洋物种的详细收集和 DNA 分析,发现了深海环境,特别是热液喷口和锰结核周围意想不到的生物多样性。这些发现表明,结核内存在孤立和独特的物种以及潜在的生殖栖息地,凸显了这些区域的生态重要性。海洋生态学家萨宾-戈尔纳(Sabine Gollner)强调,鉴于这些独特物种面临灭绝的高风险,在考虑深海采矿时必须谨慎。图为海底锰结核区。资料来源:ROV KIEL6000 GEOMARNIOZ的海洋生态学家萨宾-高尔纳(Sabine Gollner)说:"这项研究再次表明,在允许对这些栖息地中的矿物进行商业性深海开采之前,我们应该非常谨慎。"隔离动物在她的博士研究中,迪亚兹-雷西奥-洛伦佐研究了她在汤加岛附近澳大利亚和太平洋板块交界处的劳盆地热液喷口收集到的桡足类。她利用大型水下机器人,采集了大量这种在这些栖息地中占主导地位的虾类小动物。这些样本是从一个盆地内的不同地点采集的。通过DNA分析,她发现不同的种群生活在彼此隔离的环境中,种群之间几乎没有互动。在更远的盆地,她采集到了看起来相同的标本,但根据其 DNA 的组成,它们甚至应该被视为不同的物种。Coral Diaz-Recio Lorenzo(中)与法国潜水器 Nautile 一起潜水,从热液喷口采集样本。船只:Porquois Pas?图片来源:Christophe Brandily在结核上生活她研究的第二部分涉及从克拉里昂-克利珀顿区采集的锰结核样本,这是太平洋四五千米深处的一个大区域。她发现,在这些结核中,通常可以发现 10 到 15 个线虫、桡足类动物和其他动物个体,有时甚至超过 200 个。其中许多动物似乎是结核特有的,因为在这些结核周围采集的沉积物样本中没有发现它们。一些动物甚至可能将结核作为繁殖的栖息地,因为 Diaz-Recio Lorenzo 在结核内发现了虫卵。NIOZ 海洋生态学家萨宾-高尔纳(Sabine Gollner)是迪亚兹-雷西奥-洛伦佐博士研究的共同发起人,她对热液喷口周围和锰结核中发现的生命的独特性和多样性感到非常惊讶。"所研究的地点都是目前正在勘探矿物的区域。但这项研究表明,对于未来可能进行的深海采矿,我们应该格外小心,因为这些独特的物种有很高的灭绝风险"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关 智利北部的阿塔卡马沙漠是世界上最干旱的非极地沙漠,这里的动植物种类极少。由于通常十年才降一次雨,这片沙漠非常干燥,以至于美国国家航空航天局(NASA)将其作为火星地貌的替身。但是,在这干涸的地表下生活着什么呢?新的研究表明,它非常小,数量非常多,而且非常古老。虽然阿塔卡马沙漠的干旱意味着高等生物稀少,但众所周知,多种多样的细菌在这里的土壤中占主导地位。不过,研究人员的目标是深入研究,看看地表下一米多(3.3 英尺)的地方生活着哪些种类的微生物。阿塔卡马沙漠最干燥的地方之一永盖山谷(Yungay Valley)一个龟裂的洼地 卢卡斯-霍斯特曼/德国波茨坦联邦理工学院他们选择的地点位于云盖山谷的一个普拉亚(playa)地区,这是沙漠超干旱核心地区最干旱的地方之一。普拉亚是曾经包含地表水体的洼地或盆地;它们本质上是干涸的湖床。在其他地方,矿物石膏和无水石膏通常靠近地表,在上部 50 厘米/20 英寸的范围内,而在普雷亚地区,它们被埋在大约 2 米/6.6 英尺的深处。相反,无水石膏遇水后会转化为石膏。当他们挖掘到地下 4.2 米/13.8 英尺深处时,研究人员发现了石膏、无水石膏和海绿石(俗称岩盐)等盐类堆积物,以及阳离子(钠、钙)和阴离子(硫酸盐、硝酸盐、氯化物)。根据地下深度绘制的矿物、阳离子和阴离子丰度图 Horstmann 等人研究人员说:"深度为 184 厘米(72.4 英寸)的剖面上半部分主要由淤泥沉积物组成,间或有薄沙层。在 184 厘米至 230 厘米(90.6 英寸)深度之间,沉积物过渡到较粗的质地,包括沙子和卵石。在 230 厘米以下,剖面始终包含[原文如此]卵石至鹅卵石大小的颗粒"。他们使用无脊椎动物衍生 DNA(iDNA)分析,并将其与地球化学分析(X 射线衍射和离子色谱法)进行比较,以研究地下的微生物学。基因测序揭示了不同地层中丰富多样的微生物群落。大部分序列被归类为细菌;0.5%为古细菌,古细菌是一种结构与细菌相似但在进化过程中截然不同的单细胞微生物。古细菌被认为是介于细菌和真核生物或含有 DNA 的细胞含有独特细胞核的生物之间的一个古老群体。三个细菌群(门)占主导地位,占遗传序列的 90% 以上:放线菌属(Actinobacteria)、固形菌属(Firmicutes)和变形菌属(Proteobacteria)。不同地下深度的微生物组成在深度为 2 至 5 厘米(0.8 至 2 英寸)的最上层沉积物中,放线菌占微生物总数的 95%。固着菌的比例很高,从 40 厘米/15.7 英寸深度的 47% 到 30 厘米/11.8 英寸深度的 93%。只有在 70 厘米/27.6 英寸处,才出现了较低的固着菌相对丰度(34%),在 200 厘米/78.7 英寸以下则明显下降。在 200 厘米以下的沉积物中,微生物群落仍然以放线菌为主,深度达 4.2 米。从生态学角度看,洼地沉积相对较新;沉积开始于大约 1.9 万年前。然而,冲积层沉积的年代要久远得多,4.2 米的深度可以追溯到 380 万年前。研究人员认为,他们发现的放线菌群落可能在"早期"就已经在土壤中定植,然后被埋藏在冲积层下。这可能意味着,此前未知的深层生物圈将在极度干旱的沙漠土壤中无限向下延伸。链霉菌是最大的放线菌属 疾病预防控制中心/戴维-贝尔德博士该研究最引人注目的发现之一是,微生物出现在 200 厘米以下的沉积物中,在这些沉积物中,洼地过渡到由河道或冲积平原上沉积的砾石、沙、粉砂或粘土组成的冲积层。原以为这些深度的微生物多样性和丰度会较低,但事实并非如此。在阿塔卡马沙漠,石膏已经被证明可以支持微生物群落。研究人员认为,在这里,较深的石膏沉积物通过提供水分或增加沙漠高干旱土壤的保水性,在微生物多样性方面发挥了至关重要的作用。研究人员说:"尽管石膏在所有沙漠的次表层可能并不普遍,但这种次表层生态位的存在可能表明,全球沙漠的多样性迄今被低估了,在特定情况下,次表层群落可以在地球上最干旱地方的最深层持续存在。这项研究对寻找地球以外的嗜极端生物具有重要意义"。文章开头提到,美国国家航空航天局把阿塔卡马沙漠作为火星的代表。那么,火星也有石膏矿床。那么,火星上的石膏会不会也是火星上微生物生命的水源呢?该研究发表在《PNAS Nexus》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人