研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性 纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022 年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授Michael Reimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰 Single Quantum 公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC 和滑铁卢电气与计算机工程系博士生 Matteo Pennacchietti 说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer 和 Pennacchietti 与 Norbert Lütkenhaus 博士和 Thomas Jennewein 博士(两人均为 IQC 教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

2022诺贝尔物理学奖解读

2022诺贝尔物理学奖解读 2022年诺贝尓物理学奖发的众望所归,颁奖词清晰表述了是为了表彰阿兰·阿斯佩(Alan Aspect)、约翰·弗朗西斯·克劳泽(John F. Clauser)、安东·塞林格(Anton Zeilinger),在纠缠光子实验、验证违反贝尔不等式和开创量子信息科学方面的贡献。 他们验证了人类迄今为止发现的最奇怪现象:量子纠缠。并且,他们的研究让我们可以利用这种现象,来实现量子计算、量子通信,甚至是为星际传送这种科幻内容,提供了理论可能。本期视频,就给大家讲清楚2022年的诺贝尔物理学奖。评:从开头的大家“大家好”之后,基本就听不懂了... 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

中国量子网络领域取得新突破

中国量子网络领域取得新突破 清华大学交叉信息研究院博士生冯路(左)和助理研究员黄园园(右)正在实验室研究。受访者供图清华大学交叉信息研究院助理研究员黄园园介绍,他们利用同种离子的两对超精细能级结构,分别编码出量子网络中用于与光子产生纠缠的“通讯比特”和用于存储信息的“存储比特”。 同时,利用激光还实现了两种量子比特间微秒量级的相干转换。实验发现,通过此方法制备出的通讯比特,可在数百毫秒的时间内生成离子-光子纠缠;通过自旋回波方法可延长存储比特的存储寿命,实现相干时间达到秒量级的存储量子比特。通过比较有无离子-光子纠缠生成操作时存储比特的保真度变化, 研究人员证实了两种量子比特之间低于实验精度的串扰误差,从而实现了无串扰的量子网络节点。 ... PC版: 手机版:

封面图片

研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力

研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力 东京大学工业科学研究所的研究人员解决了量子信息传输中的一个基础性问题,这将极大地提高集成电路和量子计算的实用性。资料来源:东京大学工业科学研究所现在,在最近发表于《物理评论快报》上的一项研究中,东京大学工业科学研究所的研究人员正在解决这个问题:他们开发了一种新技术,可以在几十到一百微米的范围内传输量子信息。这一进展可以改善即将问世的量子电子产品的功能。研究人员如何在同一量子计算机芯片上将量子信息从一个量子点传输到另一个量子点?一种方法可能是将电子(物质)信息转换成光(电磁波)信息:通过产生光-物质混合态。之前的工作与量子信息处理的单电子需求不符。改进高速量子信息传输方式,使其在设计上更加灵活,并与现有的半导体制造工具兼容,是研究小组的研究目标。"在我们的工作中,我们将量子点中的几个电子耦合到一个称为太赫兹分环谐振器的电路中,"该研究的第一作者黑山和之解释说。"这种设计非常简单,适合大规模集成。"以往的工作都是基于谐振器与数千到数万个电子集合的耦合。事实上,耦合强度是基于这个电子群的大尺寸。相比之下,本系统只限制了几个电子,适合量子信息处理。然而,电子和太赫兹电磁波都被限制在一个超小区域内。因此,耦合强度与多电子系统相当。资深作者 Kazuhiko Hirakawa 说:"我们很兴奋,因为我们利用先进纳米技术中普遍存在的结构这些结构通常被集成到半导体制造中来帮助解决一个实际的量子信息传输问题。我们还期待着将我们的发现应用于理解光电子耦合态的基础物理学。"这项工作在解决之前量子信息传输中的一个棘手问题上迈出了重要一步,因为该问题限制了实验室研究成果的应用。此外,这种光物质相互转换被认为是基于半导体量子点的大规模量子计算机的基本架构之一。由于研究人员的成果是基于半导体制造中常见的材料和程序,因此实际应用应该很简单。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员利用光子混合纠缠提高嘈杂条件下的传送质量 实现近乎完美的状态转移

研究人员利用光子混合纠缠提高嘈杂条件下的传送质量 实现近乎完美的状态转移 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 芬兰图尔库大学和中国科技大学(合肥)的研究人员现在提出了一种理论设想,并进行了相应的实验来克服这一问题。换句话说,尽管存在噪声,新方法仍能实现高质量的远程传输。图尔库大学的 Jyrki Piilo 教授说:"这项工作的基础是,在运行远距传输协议之前,将纠缠分发到所使用的量子比特之外,即利用不同物理自由度之间的混合纠缠。"传统上,光子的偏振被用于远距离传输中的量子比特纠缠,而目前的方法则利用了光子的偏振和频率之间的混合纠缠。Piilo介绍说:"这使得噪声对协议的影响发生了重大变化,事实上,我们的发现扭转了噪声的作用,使其从对远程传输有害变为有利。"在存在噪声的传统量子比特纠缠情况下,远距传输协议不起作用。在最初存在混合纠缠且没有噪声的情况下,远距传输也不起作用。奥利-西尔塔宁博士(Olli Siltanen)的博士论文介绍了当前研究的理论部分。尽管在使用光子进行远距传物时存在某种噪声,但这一发现几乎实现了理想的远距传物。中国科技大学的李传锋教授说:"虽然我们在实验室里用光子做了许多量子物理不同方面的实验,但看到这个极具挑战性的远距传物实验成功完成,我们感到非常激动,也很有成就感。这是在最重要的量子协议背景下进行的一次重要的原理验证实验。"远距传输在传输量子信息等方面有着重要的应用,因此最重要的是要有办法保护这种传输不受噪声影响,并可用于其他量子应用。目前的研究成果可被视为基础研究,具有重要的基础意义,并为未来将该方法扩展到一般类型的噪声源和其他量子协议的工作开辟了引人入胜的途径。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员利用量子密钥创造了新的安全信息传输距离纪录:100公里

研究人员利用量子密钥创造了新的安全信息传输距离纪录:100公里 德国电信大学的研究团队通过 100 公里长的光纤电缆,成功地安全分发了量子加密密钥。资料来源:德国技术大学丹麦科技大学(DTU)的科学家通过连续可变量子密钥分发(CV QKD)技术分发量子安全密钥,在安全通信领域取得了突破性进展。该团队创造了一项新纪录,使该技术的有效距离达到了前所未有的 100 公里,这是 CV QKD 技术所能达到的最远距离。这种方法的优势在于它可以应用于现有的互联网基础设施。量子计算机对现有的基于算法的加密技术构成了威胁,目前这种加密技术可以确保数据传输不被窃听和监视。目前,量子计算机还没有强大到足以破解这些加密算法的地步,但这只是时间问题。如果量子计算机成功破解了最安全的算法,那么它就为所有通过互联网连接的数据敞开了大门。这加速了基于量子物理学原理的新加密方法的开发。但要取得成功,研究人员必须克服量子力学的一个难题确保较长距离内的一致性。迄今为止,连续可变量子密钥分发技术在短距离内最有效。"我们实现了一系列改进,尤其是在沿途光子损耗方面。在这次发表在《科学进展》(Science Advances)上的实验中,我们通过光缆将量子加密密钥安全分发了 100 公里。"德国技术大学副教授托比亚斯-盖林(Tobias Gehring)说:"这是使用这种方法的创纪录距离。"他与德国技术大学的一组研究人员的目标是能够通过互联网在全球范围内分发量子加密信息。"来自光量子态的密匙当数据需要从 A 发送到 B 时,必须对其进行保护。加密将数据与发送方和接收方之间分发的安全密钥结合起来,这样双方都能访问数据。在数据传输的过程中,第三方一定不能找出密钥,否则,加密就会被破坏。因此,密钥交换对数据加密至关重要。量子密钥分发(QKD)是研究人员正在研究的一种用于重要交换的先进技术。该技术利用量子力学粒子(称为光子)发出的光来确保加密密钥的交换。研究小组:(前排)Adnan A.E. Hajomer、Nitin Jain、Ulrik L. Andersen(后排)Ivan Derkach、Hou-Man Chin、Tobias Gehring。资料来源:德国技术大学当发送者发送用光子编码的信息时,光子的量子力学特性就会被利用,为发送者和接收者创建一个独一无二的密钥。其他人试图测量或观察量子态光子时,会立即改变光子的状态。因此,物理上只有通过干扰信号才能测量光。"不可能复制量子态,就像复制一张 A4 纸一样如果你尝试复制,那将是一个低劣的副本。这就是无法复制密钥的原因。"托比亚斯-盖林解释说:"这可以保护健康记录和金融部门等关键基础设施免遭黑客攻击。通过现有基础设施工作连续可变量子密钥分发(CV QKD)技术可以集成到现有的互联网基础设施中。使用这项技术的优势在于可以建立一个类似于光通信的系统。互联网的支柱是光通信。它通过光导纤维中的红外线发送数据。光导纤维的作用是在电缆中铺设光导,确保我们能在全球范围内发送数据。通过光纤电缆发送数据的速度更快、距离更远,而且光信号不易受到干扰,技术术语称之为噪音。"这是一项已经使用了很长时间的标准技术。因此,你不需要发明任何新东西就能用它来分发量子密钥,而且它还能大大降低实施成本。而且,我们可以在室温下工作,"托比亚斯-盖林解释说:"但 CV QKD 技术在较短的距离内效果最佳。我们的任务是增加距离。100公里是朝着正确方向迈出的一大步"。研究人员通过解决限制他们的系统在更远距离上交换量子加密密钥的三个因素,成功地增加了距离。机器学习提供了对影响系统的干扰的早期测量。这些干扰被称为"噪音",例如,电磁辐射会扭曲或破坏正在传输的量子态。较早地检测到噪声可以更有效地减少其相应的影响。此外,研究人员还能更好地纠正因噪音、干扰或硬件缺陷而可能出现的错误。"在我们即将开展的工作中,我们将利用这项技术在丹麦各部委之间建立一个安全通信网络,以确保他们的通信安全。我们还将尝试在哥本哈根和欧登塞等地之间生成秘密密钥,使在这两个城市都设有分支机构的公司能够建立量子安全通信,"托比亚斯-盖林说。编译自:ScitechDaily ... PC版: 手机版:

封面图片

开创性实验测量地球自转对量子纠缠的影响

开创性实验测量地球自转对量子纠缠的影响 萨格纳克干涉仪2公里长的光纤缠绕在边长1.4米的方形铝制框架上。 图片来源:奥地利维也纳大学光学萨格纳克干涉仪在测量旋转时已经非常灵敏,但是基于量子纠缠的干涉仪具有进一步提高这种灵敏度的潜力。量子纠缠是一种现象,其中两个或多个粒子共享一种状态,即使它们被远距离分开,其中一个粒子的测量也会影响另一个粒子的状态。研究团队建造了一个巨大的光学萨格纳克干涉仪,并在数小时内将噪声保持在低而稳定的水平。这使得他们能够检测到足够高质量的纠缠光子对,相比以前的光学萨格纳克干涉仪,旋转精度提高了1000倍。在一项实验室实验中,科学家们将纠缠光子(红色方块)送入一个干涉仪(如图),该干涉仪的灵敏度足以测量地球的自转。马尔科-迪维塔在实际实验中,两个纠缠光子在巨大线圈上缠绕的2公里长的光纤内传播,实现了一个有效面积超过700平方米的干涉仪。针对地球自转,研究人员还设计了一个巧妙的方案:将光纤分成两个等长的线圈,并通过一个光学开关将它们连接起来。通过打开和关闭开关,可有效地根据需要取消旋转信号,并延长大型设备的稳定性。这种方式就像“欺骗”光,让它认为处于一个非旋转的宇宙中。利用这项实验,研究人员观察到了地球自转对最大纠缠双光子态的影响。这证实了爱因斯坦狭义相对论和量子力学中描述的旋转参考系和量子纠缠之间的相互作用。研究人员表示,该研究结果和方法将为进一步提高基于量子纠缠的传感器旋转灵敏度奠定基础,可能会为未来通过时空曲线测试量子纠缠行为的实验开辟道路。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人