天文学家揭开天体486958 Arrokoth冰冻之谜 重新定义柯伊伯带理论

天文学家揭开天体486958 Arrokoth冰冻之谜 重新定义柯伊伯带理论 来自新视野号航天器数据的柯伊伯带天体 2014 MU69 原始接触双星的合成图像。图片来源:NASA/JHUAPL/SwRI/Roman Tkachenko由布朗大学塞缪尔-伯奇(Samuel Birch)博士和SETI研究所高级研究科学家奥尔坎-乌穆尔汉(Orkan Umurhan)博士共同撰写的论文《486958阿罗科斯星内一氧化碳冰和气体的保留》以阿罗科斯星为研究案例,提出许多柯伊伯带天体(KBO)太阳系诞生之初的残余物仍可能保留其原始的挥发性冰,从而挑战了以往关于这些古老实体进化路径的观点。左图由多色可见光成像相机(MVIC)拍摄,该相机是新视野号上拉尔夫仪器的一部分。拍摄于2019年1月1日,距离其最近接近仅7分钟,当时航天器距离地表仅约6700千米。美国国家航空航天局、约翰-霍普金斯大学应用物理实验室和西南研究院为这一出色的拍摄成果做出了贡献。右图显示了阿罗科斯季节性表皮深度的轨道平均温度,该温度是根据 Umurhan 等人的 2022 年方法计算得出的。比例尺单位为千米,视角方向与左图类似,向下看向南极。资料来源:美国国家航空航天局、约翰-霍普金斯大学应用物理实验室和西南研究所以前的 KBO 演化模型需要帮助来预测这些寒冷、遥远天体中挥发物的命运。许多模型依赖于繁琐的模拟或有缺陷的假设,低估了这些物质可能持续的时间。新研究提供了一种更简单而有效的方法,将这一过程比作气体如何通过多孔岩石逸出。它表明,像阿罗科斯这样的KBO可以将其挥发性冰保持数十亿年,形成一种地表下大气层,从而减缓冰的进一步流失。"我想强调的是,最关键的是,我们纠正了人们几十年来对这些非常寒冷和古老的天体所假设的物理模型中的一个严重错误,"Umurhan说。"这项研究可能成为重新评估彗星内部演化和活动理论的最初推动力。"上述模型是一个多孔碎石堆,由 CO 和难熔无定形 H2O 冰混合而成,具有特定的孔半径rp。顶层(棕色)仅在一个轨道上进行热处理,导致该层 CO(包括冰和气体)的损失。在升华前沿rb(深蓝色)下方,原有的一氧化碳冰体积保持不变。随着时间的推移,随着升华前沿向下移动(模型中向右移动),嵌入无定形 H2O 冰基质中的 CO 冰开始升华。产生的气体(浅蓝色表示)随后充满孔隙并向上移动,远离升华前沿。资料来源:SETI 研究所这项研究挑战了现有的预测,为了解彗星的性质及其起源开辟了新的途径。KBOs中存在的这种挥发性冰支持了一种引人入胜的说法,即这些天体是"冰炸弹",它们在改变轨道接近太阳时被激活并表现出彗星行为。这一假设有助于解释 29P/Schwassmann- Wachmann 彗星的强烈爆发活动等现象,有可能改变人们对彗星的认识。作为即将进行的 CAESAR 任务提案的联合研究员,研究人员正在采用一种全新的方法来了解彗星体的演变和活动。这项研究对未来的探索具有重要意义,同时也提醒人们太阳系的不解之谜正等待着我们去揭开。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜 两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J. daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysical Journal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab 负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B2 0402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录仅仅 24 光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了 30 多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(Roger Romani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并一些线索表明,这对双星是通过多个星系合并形成的。首先,B2 0402+379 是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到有史以来的第一次记录是在2015年通过引力波的探测但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B2 0402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B2 0402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生Tirth Surti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年太远了,不可能像在 B2 0402+379 中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于 1980 年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家绘制太空管状地图:用“结”理论解开行星路径之谜

天文学家绘制太空管状地图:用“结”理论解开行星路径之谜 萨里太空中心开发出这项技术的丹尼-欧文(Danny Owen)说:"以前,当美国国家航空航天局等机构想要绘制一条航线时,他们的计算要么靠蛮力算,要么靠猜测。我们的新技术巧妙地揭示了航天器从 A 到 B 的所有可能路线,只要两个轨道具有共同的能级。这使得任务规划变得更加简单。我们将其视为太空管状地图。"近几十年来,太空任务越来越依赖于在不使用燃料的情况下改变卫星在太空中运行轨迹的能力。其中一种方法是寻找"异质连接"使航天器能够在不使用燃料的情况下从一个轨道转移到另一个轨道的路径。找到这些路径的数学方法非常复杂,通常是通过使用庞大的计算能力来计算出一个又一个选项,或者是进行"智能猜测",然后进一步研究。这项新技术利用一种被称为"结理论"的数学领域来快速生成粗略的轨迹,然后再对其进行改进。通过这种方法,航天机构可以获得一份从指定轨道出发的所有可能路线的完整列表。然后,他们就可以选择最适合其任务的路线就像你通过研究管状地图来选择路线一样。该技术已在多个行星系统上成功测试,包括月球和木星的伽利略卫星。这两个系统都是当前和未来任务的重点。萨里大学轨道力学讲师 Nicola Baresi 博士说:"在美国国家航空航天局阿耳特弥斯计划的推动下,新的月球竞赛正在激励世界各地的任务设计者研究燃料效率高的路线,以便更好、更有效地探索月球附近地区。我们的技术不仅使这项繁琐的任务变得更加简单,而且还可以应用于其他行星系统,例如土星和木星的冰卫星。"论文发表在《天体动力学》杂志上。 DOI: 10.1007/s42064-024-0201-0编译来源:ScitechDaily ... PC版: 手机版:

封面图片

澳州天文学家发现迄今成长最快的黑洞

澳州天文学家发现迄今成长最快的黑洞 澳大利亚科研人员称发现了迄今已知成长最快的黑洞,它每天吞噬掉的物质质量相当于一个太阳。 新华社星期二(2月20日)报道,澳大利亚国立大学研究人员领衔的团队日前在英国《自然·天文学》杂志上发表论文说,这个黑洞的质量高达太阳的170亿倍,距离地球超过120亿光年。 欧洲南方天文台发布的公报指出,这个黑洞所在的类星体代号为J0529-4351,不仅是迄今观测到的最明亮类星体,也是迄今观测到的最明亮天体。 据介绍,这个黑洞的吸积盘直径达7光年,超过太阳系到其相邻恒星系统半人马座阿尔法星系的距离。 论文第一作者、澳大利亚国立大学天文学和天体物理学研究学院副教授克里斯蒂安·沃尔夫说,这个黑洞“令人难以置信的成长速度意味着光和热的大量释放”,因此它所在的类星体也成为“宇宙中迄今已知的最明亮物体”。 事实上,J0529-4351一直掩藏在“众目睽睽之下”。之前,研究人员利用电脑模型分析欧洲航天局“盖亚”空间探测器采集的相关数据时,错将J0529-4351识别为一颗恒星,直到最近通过地面望远镜观测才将其确定为类星体。 类星体是活动星系核,由其中心的超大质量黑洞所驱动。当黑洞周围的气体被吞噬时会形成漩涡状吸积盘,巨大的引力势在吸积盘上得以释放,转化为热能和电磁辐射,使得类星体异常明亮。 2024年2月20日 10:09 PM

封面图片

柯伊伯带天体486958 Arrokoth充当着时间胶囊 保存着数十亿年前的古老冰层

柯伊伯带天体486958 Arrokoth充当着时间胶囊 保存着数十亿年前的古老冰层 最新研究表明,柯伊伯带中的天体(如阿罗科斯)在形成过程中保留了古老的冰层,这对现有理论提出了挑战,并提出了彗星行为的 "休眠冰弹 "模型。这张图片是2019年1月1日美国宇航局新视野号飞船飞越柯伊伯带天体2014 MU69时拍摄的。图片来源:NASA/约翰霍普金斯大学应用物理实验室/西南研究所研究人员利用他们开发的一个新模型来研究彗星是如何演变的,结果表明,这种冰封状态并不是Arrokoth所独有的,柯伊伯带的许多天体柯伊伯带位于太阳系的最外围地区,可以追溯到大约46亿年前太阳系形成的早期可能也含有它们形成时的古老冰层。布朗大学的行星科学家萨姆-伯奇(Sam Birch)是这篇论文的共同作者之一,他说:"我们在工作中用一个相当简单的数学模型证明,可以把这些原始的冰锁定在这些天体的内部深处很长一段时间。大多数人都认为这些冰应该早已消失,但我们现在认为情况可能并非如此。"伯奇在《Icarus》杂志上介绍了他与合著者、SETI研究所高级研究科学家奥尔坎-乌穆尔汉(Orkan Umurhan)的研究成果。直到现在,科学家们还很难弄清这些太空岩石上的冰随着时间的推移会发生什么变化。这项研究对广泛使用的热演化模型提出了质疑,因为这些模型无法解释像一氧化碳一样对温度敏感的冰的寿命。研究人员为这项研究创建的模型解释了这一变化,并表明这些天体中的高挥发性冰层的存在时间比以前想象的要长得多。Birch说:"Arrokoth非常寒冷,为了让更多的冰升华或者说直接从固态变成气态,跳过其中的液态阶段它升华成的气体必须首先通过其多孔的海绵状内部向外流动。诀窍在于,移动气体还必须使冰升华,因此会产生多米诺骨牌效应:Arrokoth内部越来越冷,升华的冰越来越少,移动的气体越来越少,温度越来越低,如此循环。最终,一切都被有效地关闭了,剩下的就是一个充满气体的物体,而这些气体会更缓慢地流出。"这项工作表明,柯伊伯带天体可以充当休眠的"冰炸弹",将挥发性气体保存在内部数十亿年,直到轨道移动使它们更接近太阳,热量使它们变得不稳定。这个新想法可以帮助解释为什么柯伊伯带的这些冰冻天体在第一次靠近太阳时爆发得如此猛烈。突然,它们内部的冷气体迅速增压,这些天体就演变成了彗星。"最关键的是,我们纠正了人们几十年来为这些非常寒冷和古老的天体所假设的物理模型中的一个严重错误,"伯奇在论文中的合著者乌穆尔汉说。"这项研究可能成为重新评估彗星内部演化和活动理论的最初推动力。"这项研究挑战了现有的预测,为了解彗星的性质及其起源开辟了新的途径。Birch和Umurhan是美国国家航空航天局彗星天体生物学探索样本返回(CAESAR)任务的共同研究员,该任务旨在从67P/丘留莫夫-格拉西缅科彗星上获取至少80克的表面物质,并将其送回地球进行分析。这项研究的结果有助于指导 CAESAR 的探测和取样策略,加深我们对彗星演化和活动的了解。伯奇说:"在整个外太阳系的小天体中,很可能封存着大量的这些原始材料这些材料正等待着爆发,让我们对它们进行观测,或者在我们能够把它们取回并带回地球之前处于深度冷冻状态。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家发现中子星环绕“不应该存在”的神秘天体运行

天文学家发现中子星环绕“不应该存在”的神秘天体运行 艺术家眼中的神秘双星系统 MPIfR; Daniëlle Futselaar ()天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。由于这些信号是如此稳定和可预测,天文学家可以研究它们的时间,并计算出有关其周围环境的惊人信息量。在这种情况下,他们发现这颗脉冲星与另一个天体一起运行这时事情开始变得诡异起来。"当我们查看NGC 1851的哈勃图像时,我们在那个位置什么也没看到,"该研究的合著者Prajwal Voraganti Padmanabh说。"因此,与脉冲星在轨道上运行的天体不是一颗正常的恒星,而是一颗坍缩恒星的密度极高的残余物。"众所周知,这些坍缩的恒星残骸有两种形式:要么是另一颗中子星,要么是一个黑洞。但有一个问题这个天体被发现质量太大,不可能是一颗中子星,但质量不够大,不可能是一个黑洞。根据模型,中子星总是小于大约两个太阳质量,而黑洞永远不会轻于大约五个太阳质量。对宇宙的观测也证明了这一点紧凑的天体总是属于其中一类。总之,直到现在。新发现的这个天体的质量大约是太阳质量的 2.1 到 2.7 倍,完全符合既定的"质量差距"。这意味着,它可能是已知最重的中子星,也可能是已知最轻的黑洞或许,完全是另一种东西。这项研究的合著者保罗-弗莱雷(Paulo Freire)说:"不管这个天体是什么,这都是一个令人兴奋的消息。如果它是一个黑洞,这将是已知的第一个脉冲星/黑洞系统,几十年来这一直是脉冲星天文学的圣杯。如果它是一颗中子星,这将对我们理解物质在这种惊人密度下的未知状态产生根本性影响。"研究人员提出,这个奇怪的系统实际上是由之前的两个双星系统形成的。其中一个包含两颗中子星,它们相撞后合并成一个小于平均水平的黑洞。而另一个系统则包含一颗中子星,它与另一颗恒星的轨道很近,前者从后者身上汲取物质。这个过程在宇宙中很常见,它将角动量传递给中子星,使其变成一颗快速旋转的脉冲星。另一颗恒星则变成了被称为白矮星的死壳。最终,黑洞闯入了双星系统,三个天体的复杂运动导致白矮星被抛出。这就形成了今天看到的脉冲星/黑洞系统。这并不是在质量间隙中发现的第一个天体。2019 年,引力波探测器捕捉到了一个 23 个太阳质量的黑洞吞食2.6 个太阳质量物体的信号。由于这是在天体被摧毁后才发现的,我们只能从中了解到这么多。值得庆幸的是,NGC 1851 有一个活着的黑洞,我们可以继续研究它。这项研究的合著者阿鲁尼玛-杜塔(Arunima Dutta)说:"我们对这个系统的研究还没有结束。揭开伴星的真实面目将是我们了解中子星、黑洞以及黑洞质量间隙中可能潜藏的其他东西的一个转折点!"这项研究发表在《科学》杂志上。下面的视频展示了该系统的拟议形成过程。 ... PC版: 手机版:

封面图片

天文学家解释了富勒烯的太空新源头

天文学家解释了富勒烯的太空新源头 富勒烯于 1985 年被发现并获得诺贝尔奖,它是一种稳定的碳分子,由于其在太空中的存在和运输复杂分子的潜力,可能有助于了解宇宙的有机物质组织。上图描述了行星状星云 M57 的中心,由天文摄影师罗伯特-根德勒博士和约翰-波兹曼拍摄。图片来源:NASA/ESA这些分子是 1985 年在实验室中发现的,11 年后,他们的三位发现者获得了诺贝尔化学奖。从那时起,许多观测证据都证明了它们在太空中的存在,特别是在像太阳一样大小的老恒星周围的气体云中,这些气体云被称为行星状星云,是恒星生命末期从外层排出的。由于这些分子高度稳定且难以破坏,人们认为富勒烯可以充当其他分子和原子的笼子,因此它们可能将复杂的分子带到地球,为生命的诞生提供了动力。因此,对它们的研究对于了解宇宙中有机物质组织的基本物理过程非常重要。光谱学对于搜索和识别太空中的富勒烯至关重要。通过分析原子和分子在光线中留下的化学足迹,光谱学使我们能够研究构成宇宙的物质。这些光谱显示了表明富勒烯存在的光谱线,但同时也显示了更宽的红外波段(UIR,英文缩写),这些波段在宇宙中被广泛探测到,从太阳系中的小天体到遥远的星系。领导这项研究的 IAC 研究员马尔科-戈麦斯-穆尼奥斯(Marco A. Gómez Muñoz)解释说:"导致这种广泛存在于宇宙中的红外辐射的化学物质的鉴定是一个天体化学之谜,尽管人们一直认为它很可能富含生命的基本元素之一碳。"为了识别这些神秘的波段,研究小组重现了行星状星云 Tc 1 的红外辐射。对发射波段的分析表明,其中存在无定形氢化碳(HAC)颗粒。这些处于高度无序状态的碳和氢的化合物在垂死恒星的包层中非常丰富,可以解释这个星云的红外辐射。"我们首次将从实验室实验中获得的HAC光学常数与光离子化模型结合起来,从而再现了富勒烯含量非常丰富的行星状星云Tc 1的红外辐射",论文共同作者之一、IAC研究员Domingo Anibal García Hernández解释说。对于研究小组来说,HAC 和富勒烯同一物体的出现支持了这样一种理论,即富勒烯可能是在尘粒被破坏的过程中形成的,例如与紫外线辐射的相互作用,而紫外线辐射的能量要比可见光高得多。有了这项成果,科学家们为未来基于实验室化学和天体物理学合作的研究开辟了道路。戈麦斯-穆尼奥斯总结说:"我们的工作清楚地表明,跨学科科学和技术在推动天体物理学和天体化学的基本进步方面具有巨大潜力。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人